
EVERY GRADED IDEAL OF A LEAVITT PATH ALGEBRA IS
GRADED ISOMORPHIC TO A LEAVITT PATH ALGEBRA

LIA VAŠ

Abstract. We show that every graded ideal of a Leavitt path algebra is graded isomorphic to a
Leavitt path algebra. It is known that a graded ideal I of a Leavitt path algebra is isomorphic to the
Leavitt path algebra of a graph, known as the generalized hedgehog graph, which is defined based
on certain sets of vertices uniquely determined by I. However, this isomorphism may not be graded.
We show that replacing the short “spines” of the generalized hedgehog graph with possibly fewer,
but then necessarily longer spines, we obtain a graph (which we call the porcupine graph) such that
its Leavitt path algebra is graded isomorphic to I. Our proof adapts to show that for every closed
gauge-invariant ideal J of a graph C∗-algebra, there is a gauge-invariant ∗-isomorphism mapping
the graph C∗-algebra of the porcupine graph of J onto J.

1. Introduction

If E is a graph and LK(E) is its Leavitt path algebra, it is known that every graded ideal I of
LK(E) is uniquely determined by a pair (H,S) of certain subsets of vertices, known as an admissible
pair (we review the definition in section 2.2). For every such admissible pair, one can define a graph,
referred to as the generalized hedgehog graph in [1], such that I is isomorphic to the Leavitt path
algebra of this graph. The name “hedgehog” comes from the construction in which one attaches
new edges (the “spines”) to H ∪ S (the “body”). We modify this construction by replacing the
added edges with possibly fewer paths but then necessarily of length larger than one. Because of
the longer spines, we call the resulting graph the porcupine graph of (H,S). In the main result of
the paper, Theorem 3.3, we construct a graded ∗-isomorphism of I and the Leavitt path algebra of
the porcupine graph of the admissible pair corresponding to I.

We adapt our result to graph C∗-algebras also. In Corollary 3.4, we show that for every closed
gauge-invariant ideal J of a graph C∗-algebra there is a gauge-invariant (and graded in the C∗-
algebra sense) ∗-isomorphism which maps the graph C∗-algebra of the porcupine graph of J onto
J. Just as in the algebraic case, it is known that such ideal J is ∗-isomorphic to a graph C∗-algebra,
but it was not clear whether there is a gauge-invariant ∗-isomorphism between J and a graph
C∗-algebra. We show that such an isomorphism indeed exits.

2. Prerequisites

2.1. Graded rings and ∗-rings prerequisites. A ring R (not necessarily unital) is graded by a
group Γ if R =

⊕
γ∈ΓRγ for additive subgroups Rγ and RγRδ ⊆ Rγδ for all γ, δ ∈ Γ. The elements

of the set
⋃
γ∈ΓRγ are said to be homogeneous and γ is the degree of any nonzero element of Rγ.
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The grading is trivial if Rγ = 0 for every γ ∈ Γ which is not the group identity. We adopt the
standard definitions of graded ring homomorphisms, graded algebras, and graded ideals as defined
in [4].

A ring R is an involutive ring or a ∗-ring, if there is an anti-automorphism ∗ : R → R of order
two. If R is also a K-algebra for some commutative, involutive ring K, then R is a ∗-algebra if
(kx)∗ = k∗x∗ for all k ∈ K and x ∈ R. If R and S are ∗-rings, a ring homomorphism φ : R → S is
a ∗-homomorphism if φ(x∗) = φ(x)∗ for every x ∈ R.

2.2. Leavitt path algebras prerequisites. Let E be a directed graph, let E0 denote the set of
vertices, E1 the set of edges, and s and r denote the source and range maps of E. A sink of E is a
vertex which emits no edges and an infinite emitter is a vertex which emits infinitely many edges. A
vertex of E is regular if it is not a sink or an infinite emitter. A path is a single vertex or a sequence
of edges e1e2 . . . en for some positive integer n such that r(ei) = s(ei+1) for i = 1, . . . , n− 1.

Extend a graph E to the graph with the same vertices and with edges E1 ∪ {e∗ | e ∈ E1} where
the range and source functions are the same as in E for e ∈ E1 and s(e∗) = r(e) and r(e∗) = s(e) for
the added edges. If K is any field, the Leavitt path algebra LK(E) of E over K is a free K-algebra
generated by the set E0 ∪ E1 ∪ {e∗ | e ∈ E1} such that for all vertices v, w and edges e, f,

(V) vw = 0 if v 6= w and vv = v, (E1) s(e)e = er(e) = e,
(E2) r(e)e∗ = e∗s(e) = e∗, (CK1) e∗f = 0 if e 6= f and e∗e = r(e),
(CK2) v =

∑
e∈s−1(v) ee

∗ for each regular vertex v.

By the first four axioms, every element of LK(E) can be represented as a sum of the form∑n
i=1 kipiq

∗
i for some n, paths pi and qi, and elements ki ∈ K, for i = 1, . . . , n where v∗ = v for

v ∈ E0 and p∗ = e∗n . . . e
∗
1 for a path p = e1 . . . en. Using this representation, one can make LK(E)

into an involutive ring by (
∑n

i=1 kipiq
∗
i )
∗

=
∑n

i=1 k
∗
i qip

∗
i where ki 7→ k∗i is any involution on K. For

more details on these basic properties, see [1].

If we consider K to be trivially graded by Z, LK(E) is naturally graded by Z so that the n-
component LK(E)n is the K-linear span of the elements pq∗ for paths p, q with |p| − |q| = n where
|p| denotes the length of a path p. While one can grade a Leavitt path algebra by any group (see
[4, Section 1.6.1]), we consider only the natural grading by Z.

If a K-algebra R contains elements av, be, and ce∗ which satisfy the axioms (V), (E1), (E2),
(CK1), and (CK2) where v ∈ E0 and e ∈ E1 for some graph E, the Universal Property of LK(E)
ensures that the map φ : v 7→ av, e 7→ be, e

∗ 7→ ce∗ has a unique K-algebra homomorphism extension
φ : LK(E)→ R (see [1, Remark 1.2.5]). If R is Z-graded and the elements φ(v), φ(e), and φ(e∗) have
degrees 0, 1, and −1 respectively, such extension is graded and the Graded Uniqueness Theorem ([1,
Theorem 2.2.15]) states that φ is injective if and only if φ(v) 6= 0 for every v ∈ E0. If R is involutive
and if a∗v = av for every v ∈ E0 and (be)

∗ = ce∗ for every e ∈ E1, then φ is a ∗-homomorphism (see
[7, Lemma 4.7]).

2.3. Graded ideals of a Leavitt path algebra. A subset H of E0 is said to be hereditary if
r(p) ∈ H for any path p such that s(p) ∈ H. The set H is saturated if v ∈ H for any regular vertex
v such that r(s−1(v)) ⊆ H. We recall a construction from [6]. If H is hereditary and saturated, let

BH = {v ∈ E0 −H | v infinite emitter and s−1(v) ∩ r−1(E0 −H) is nonempty and finite} and

vH = v −
∑

e∈s−1(v)∩r−1(E0−H)

ee∗ for v ∈ BH .
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An admissible pair is an ordered pair (H,S) where H ⊆ E0 is hereditary and saturated and
S ⊆ BH . For such a pair, let I(H,S) denote the graded ideal generated by homogeneous elements
H ∪ {vH | v ∈ S}. The ideal I(H,S) is the K-linear span of the elements pq∗ for paths p, q with
r(p) = r(q) ∈ H and the elements pvHq∗ for paths p, q with r(p) = r(q) = v ∈ S (see [6, Lemma
5.6]). The converse holds as well: for every graded ideal I, the vertices in I form a hereditary and
saturated set H and the set of infinite emitters such that vH ∈ I is a subset of BH ([6, Theorem
5.7], also [1, Theorem 2.5.8]). For an admissible pair (H,S), let E(H,S) be the graph defined by

F1(H,S) = {e1 . . . en is a path of E | r(en) ∈ H, s(en) /∈ H ∪ S},
F2(H,S) = {p is a path of E | r(p) ∈ S, |p| > 0}, Fi(H,S) is a copy of Fi(H,S), i = 1, 2,
E0

(H,S) = H ∪ S ∪ F1(H,S) ∪ F2(H,S), and

E1
(H,S) = {e ∈ E1 | s(e) ∈ H} ∪ {e ∈ E1 | s(e) ∈ S, r(e) ∈ H} ∪ F1(H,S) ∪ F2(H,S) with s and r

the same as on E1 for e ∈ E1 ∩ E1
(H,S) and s(p) = p, r(p) = r(p) for p ∈ F1(H,S) ∪ F2(H,S).

By [5, Theorem 6.1] (also [1, Theorem 2.5.22]), the ideal I(H,S) is isomorphic to LK(E(H,S)).

In [1], the graph E(H,∅) is referred to as the hedgehog graph and the graph E(H,S) is referred to
as the generalized hedgehog graph. The term “hedgehog” is chosen since the added edges ending
at H ∪ S resemble spines of the hedgehog body H ∪ S. The isomorphism LK(E(H,S)) → I(H,S)
is defined so that the edges of E(H,S) are mapped to certain homogeneous elements of I(H,S) of
positive degree, not necessarily degree one. Thus, the degrees are not necessarily preserved under
this map and so this isomorphism may not be graded.

In [2], the authors consider a version of E(H,S) they denote HES (see [5] for details on differences in
definitions). [2, Proposition 3.7] states that I(H,S) and LK(HES) are graded isomorphic. However,
the map LK(HES)→ I(H,S) in the proof is defined analogously to the map LK(E(H,S))→ I(H,S)
and, as we noted above, this map is not necessarily a graded map. The last section of [5] contains
some further details on a problem with the definition of HES and [2, Proposition 3.7].

3. The main result

We modify the construction of the generalized hedgehog graph of an admissible pair (H,S)
by making the spines added to the body H ∪ S possibly fewer in number but then necessarily
longer in length. Because of the longer spines, we call the resulting graph the porcupine graph and
denote it by P(H,S). The modified construction enables us to create a degree preserving isomorphism
LK(P(H,S))→ I(H,S).

Definition 3.1. For an admissible pair (H,S), we keep the definitions of F1(H,S) and F2(H,S).
For each e ∈ (F1(H,S) ∪ F2(H,S)) ∩ E1, let we be a new vertex and f e a new edge such that
s(f e) = we and r(f e) = r(e). Continue this process inductively as follows. For each path p = eq
where q ∈ F1(H,S) ∪ F2(H,S) and |q| ≥ 1, add a new vertex wp and a new edge fp such that
s(fp) = wp and r(fp) = wq.

We define the porcupine graph P(H,S) as follows. The set of vertices of P(H,S) is

H ∪ S ∪ {wp | p ∈ F1(H,S) ∪ F2(H,S)}.
The set of edges of P(H,S) is

{e ∈ E1 | s(e) ∈ H} ∪ {e ∈ E1 | s(e) ∈ S, r(e) ∈ H} ∪ {fp | p ∈ F1(H,S) ∪ F2(H,S)}
The s and r maps of P(H,S) are the same as in E for the common edges and they are defined as
above for the new edges.
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Before formulating and proving the main result, we present examples comparing and contrasting
the generalized hedgehog and the porcupine graphs of an admissible pair.

Example 3.2. Let E be the Toeplitz graph •we 66
g // •v and let H = {v}. The hedgehog

graph of (H, ∅) is listed first and the porcupine graph second.

eg•
eg

  

•

e2g

��

e2g ◦

��
g• g // •v ◦oo // •we2g fe

2g

// •weg feg // •wg fg // •v

The graded isomorphism of Theorem 3.3 is such that the path en−1g of length n corresponds to the
path f e

n−1gf e
n−2g . . . f g of length n also.

We consider another example with an infinite emitter. Let E be the graph • e1 // •w 44//
**%%

e2

��

•v

•
e3

==

// •
and consider H = {v}, S = {w}. In this case, F1(H,S) = {e3, e2e3, e1e2e3} and F2(H,S) = {e1}.
The generalized hedgehog graph of (H,S) is listed first and the porcupine graph second.

•
e3
��

e3

•e1 e1 // •w 44//
**%% •v •e2e3e2e3oo

•
e1e2e3

OO

e1e2e3

•we1 fe1 // •w 44//
**%% •v •we3fe3oo •we2e3fe2e3oo •we1e2e3fe1e2e3oo

Theorem 3.3. For an admissible pair (H,S) of a graph E,

I(H,S) and LK(P(H,S)) are graded ∗-isomorphic.

Thus, every graded ideal of a Leavitt path algebra is graded ∗-isomorphic to a Leavitt path algebra.

Proof. We define a function φ which maps the vertices and edges of P(H,S) to elements of I(H,S)
as follows. For a vertex v of P(H,S), we let

φ(v) =


v if v ∈ H
vH if v ∈ S
pp∗ if v = wp and p ∈ F1(H,S)
pr(p)Hp∗ if v = wp and p ∈ F2(H,S)

For an edge g of P(H,S), we let

φ(g) =


e if g = e ∈ E1 or if g = f e for some e ∈ F1(H,S) ∩ E1

er(e)H if g = f e for some e ∈ F2(H,S) ∩ E1

epp∗ if g = f ep for some e ∈ E1 and p ∈ F1(H,S)
epr(p)Hp∗ if g = f ep for some e ∈ E1 and p ∈ F2(H,S)

Extend φ to g∗ for g ∈ P 1
(H,S) by φ(g∗) = φ(g)∗ and use definitions to check that (V), (E1), (E2),

and (CK1) hold for φ(v), φ(g), φ(g∗), v ∈ P 0
(H,S), g ∈ P 1

(H,S). We present more details for checking

that (CK2) holds. If v is a regular vertex of P(H,S), then v cannot be in S, so v ∈ H or v = wp for



GRADED IDEALS OF LEAVITT PATH ALGEBRAS 5

some p ∈ F1(H,S) ∪ F2(H,S). In the first case, the edges v emits are in E since H is hereditary
and the relation v =

∑
e∈s−1(v) ee

∗ holds in LK(P(H,S)) since it holds in LK(E). In the second case,

consider the four possible cases: p = e ∈ F1(H,S) ∩ E1, p = e ∈ F2(H,S) ∩ E1, p = eq for
e ∈ E1, q ∈ F1(H,S), and p = eq for e ∈ E1, q ∈ F2(H,S). Note that in each case, v emits only one
edge fp so it is sufficient to check that φ(fp)φ((fp)∗) = φ(v) in each case.

If p = e ∈ F1(H,S) ∩ E1, then φ(f e)φ((f e)∗) = ee∗ = φ(v).

If p = e ∈ F2(H,S) ∩ E1, then φ(f e)φ((f e)∗) = er(e)Hr(e)He∗ = er(e)He∗ = φ(v).

If p = eq for e ∈ E1, q ∈ F1(H,S), then φ(fp)φ((fp)∗) = eqq∗qq∗e∗ = eqq∗e∗ = pp∗ = φ(v).

If p = eq for e ∈ E1, q ∈ F2(H,S), then φ(fp)φ((fp)∗) = eqr(p)Hq∗qr(p)Hq∗e∗ = eqr(p)Hq∗e∗ =
pr(p)Hp∗ = φ(v). This shows that (CK2) holds.

By the Universal Property, φ has a unique extension to aK-algebra homomorphism LK(P(H,S))→
I(H,S). Since φ preserves degrees of v ∈ P 0

(H,S) and of g and g∗ for g ∈ P 1
(H,S), this extension, which

we denote also by φ, is a graded homomorphism. As φ(v)∗ = φ(v) for v ∈ P 0
(H,S) and φ(g∗) = φ(g)∗

for g ∈ P 1
(H,S), φ is a ∗-homomorphism. The map φ is nonzero on every vertex of P(H,S), so φ is

injective by the Graded Uniqueness Theorem.

Since φ is a ∗-homomorphism, to show surjectivity of φ, it is sufficient to show (1) and (2) where
(1) denotes the condition that p is in the image of φ for every path such that r(p) ∈ H, and (2)
denotes the condition that pr(p)H is in the image of φ for every path p such that r(p) ∈ S. Both
claims hold for paths of zero length since φ(v) = v if v ∈ H and φ(v) = vH if v ∈ S. Thus, consider
a path p = e1 . . . en for a positive integer n.

To show (1) assume that r(p) ∈ H. If s(p) ∈ H, then φ(p) = p so the claim holds. If s(p) /∈ H,
let i ∈ {1, 2, . . . , n} be the largest such that s(ei) /∈ H. We consider three cases: (i) s(ei) /∈ S, (ii)
s(ei) ∈ S and i = 1, and (iii) s(ei) ∈ S and i > 1.

In case (i), ej . . . ei ∈ F1(H,S) for all j = 1, . . . i and we have that

φ(f e1...eif e2...ei . . . f eiei+1 . . . en) = e1 . . . ei(e2 . . . ei)
∗(e2 . . . ei)(e3 . . . ei)

∗ . . . ei−1eie
∗
i ei ei+1 . . . en =

= e1 . . . ei ei+1 . . . en = e1 . . . en = p

if i < n and the analogous argument applies to the case i = n.

In case (ii), φ(ej) = ej for every j = 1, . . . , n and φ(p) = p.

In case (iii), ej . . . ei−1 ∈ F2(H,S) for every j = 1, . . . i− 1 and r(ei−1)Hei = ei so that

φ(f e1...ei−1f e2...ei−1 . . . f ei−1ei . . . en) = e1 . . . ei−1r(ei−1)H(e2 . . . ei−1)∗e2 . . . ei−1r(ei−1)H . . .

. . . e∗i−1ei−1r(ei−1)Heiei+1 . . . en = e1 . . . ei−1r(ei−1)Heiei+1 . . . en = e1 . . . ei−1eiei+1 . . . en = p.

This shows that (1) holds.

To show (2), assume that r(p) ∈ S. Then ei . . . en is in F2(H,S) for every i = 1, . . . , n and

φ(f e1...enf e2...en . . . f en) = e1 . . . enr(p)H(e2 . . . en)∗(e2 . . . en)r(p)H(e3 . . . en)∗ . . .

. . . en−1enr(p)He∗nenr(p)H = e1 . . . enr(p)H = pr(p)H .

This shows that φ is surjective.

The second sentence of the theorem is a direct corollary of the first sentence and [6, Theorem
5.7] (also [1, Theorem 2.5.8]). �
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3.1. Graph C∗-algebras. Theorem 3.3 has its graph C∗-algebra version. If E is a graph, the
graph C∗-algebra of E is the universal C∗-algebra generated by mutually orthogonal projections
{pv | v ∈ E0} and partial isometries with mutually orthogonal ranges {se | e ∈ E1} satisfying
the analogues of the (CK1) and (CK2) axioms and the axiom (CK3) stating that ses

∗
e ≤ ps(e) for

every e ∈ E1. The term “universal” in the definition means that the C∗-algebra version of the
algebraic Universal Property, mentioned before, holds (see [1, Definition 5.2.5]). By letting se1...en
be se1 . . . sen and sv = pv for e1, . . . , en ∈ E1 and v ∈ E0, sp is defined for every path p.

The set {pv, se | v ∈ E0, e ∈ E1} is referred to as a Cuntz-Krieger E-family. For such an E-
family and an element z of the unit circle T, one defines a map γEz by γEz (pv) = pv and γEz (se) = zse
and then uniquely extends this map to a ∗-automorphism of C∗(E) (we assume a homomorphism
of a C∗-algebra to be bounded). The gauge action γE on T is given by γE(z) = γEz . Note that
γEz (sps

∗
q) = z|p|−|q|sps

∗
q for z ∈ T and paths p and q. The presence of the degree |p|− |q| of pq∗ in the

previous formula explains the connection of this action and the Z-grading of LC(E). If the integral

of a continuous function f : T→ C over T is defined by
∫
T f(z)dz =

∫ 1

0
f(e2πit)dt, the gauge action

on C∗(E) determines a Z-grading of C∗(E) (see [1, Proposition 5.2.11]) so that

C∗(E)n = {x ∈ C∗(E) |
∫
T
z−nγEz (x)dz = x} (*)

is the completion of LC(E)n and C∗(E) is the completion of
⊕

n∈ZC
∗(E)n. We note that this grading

is not a grading in the algebraic sense, but in the C∗-algebra sense (see the paragraph following [1,
Theorem 5.2.9.]).

A closed ideal J of a graph C∗-algebra C∗(E) is gauge-invariant if γEz (J) = J for every z ∈ T.
By [3, Theorem 3.6], every such ideal J is the completion of the linear span of the elements sps

∗
q for

paths p, q with r(p) = r(q) ∈ H and the elements spp
H
v s
∗
q for paths p, q with r(p) = r(q) = v ∈ S

where pHv = pv −
∑

e∈s−1(v)∩r−1(E0−H) ses
∗
e for v ∈ BH and where (H,S) is the admissible pair

uniquely determined by J and defined analogously as for an ideal of LK(E). Also as before, an
admissible pair (H,S) uniquely determines a closed gauge-invariant ideal J(H,S) which is graded
in the C∗-algebra sense.

If R is a C∗-algebra with an action β : T→ Aut(R), we say that a ∗-homomorphism φ : C∗(E)→
R is gauge-invariant if βz ◦ φ = φ ◦ γEz for every z ∈ T. Thus, if J is a closed gauge-invariant
ideal of C∗(E), F is a graph, and φ : C∗(F ) → J is a ∗-homomorphism, φ is gauge-invariant if
γEz |J ◦ φ = φ ◦ γFz for every z ∈ T. It is direct to see that every such gauge-invariant map φ is
graded. Indeed, using the formula (*) and the fact that φ is bounded, one directly checks that
φ(C∗(F )n) ⊆ Jn.

Corollary 3.4. For an admissible pair (H,S) of a graph E, there is a gauge-invariant (thus graded)
∗-isomorphism

φ : C∗(P(H,S)) ∼= J(H,S).

Thus, for every closed gauge-invariant ideal J of a graph C∗-algebra, there is a gauge-invariant
(thus graded) ∗-isomorphism mapping the graph C∗-algebra of the porcupine graph corresponding to
J onto J.

Proof. One defines a map φ on {pv, sg | v ∈ P 0
(H,S), g ∈ P 1

(H,S)} analogously as in Theorem 3.3. We

claim that the image of this map constitutes a Cuntz-Krieger P(H,S)-family. Indeed, {φ(pv) | v ∈
P 0

(H,S)} is a set of orthogonal projections in J(H,S) and {φ(sg) | g ∈ P 1
(H,S)} is a set of partial

isometries in I(H,S) with mutually orthogonal ranges. One checks that (CK1) and (CK2) hold in
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the same way as it was done in the proof of Theorem 3.3. If g ∈ P 1
(H,S) and s(g) is regular, the

requirement φ(sg)φ(sg)
∗ ≤ φ(ps(g)) follows from (CK2). If g ∈ P 1

(H,S) and s(g) is an infinite emitter,

s(g) ∈ H ∪ S and g is an edge in E1. Thus, (CK3) holds for sg in C∗(P(H,S)) since it holds for sg in
C∗(E).

The map φ has a unique extension to a ∗-homomorphism φ : C∗(P(H,S)) → J(H,S) by the
Universal Property. To show that φ is gauge-invariant, it is sufficient to check that the condition

γEz |I ◦ φ = φ ◦ γP(H,S)
z holds on {pv, sg | v ∈ P 0

(H,S), g ∈ P 1
(H,S)} which is direct to check using

definitions.

The map φ is nonzero on every element pv for v ∈ P 0
(H,S), so φ is injective by the Gauge-Invariant

Uniqueness Theorem (see [1, Theorem 5.2.12]). The surjectivity of φ holds by arguments analogous
to those in the proof of Theorem 3.3. �
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