Porcupine-quotient and the fourth primary color

Lia Vaš

Saint Joseph's University, Philadelphia, USA

hedgehog

porcupine

porcupine-quotient

three

primary

the fourth one

Substructures and quotients

A very general question: given a short exact sequence

$$
0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0
$$

how to patch the information from I and R / I to recover the information on R ?

More specifically, given g and h, how to get f ?

Where do these questions come from?

Let R, S be your favourite graph (or groupoid) algebras and I, J their appropriate substructures. Let \bar{R}, \bar{S}, etc, denote some exact functor (e.g. pointed K_{0}^{gr}).
Having

and getting isomorphisms g and h using some inductive process, we would like to have an iso f as below.

This brings us to the following ...

1. Substructures and quotients can also be represented as algebras of graphs (or groupoids).

quotient

porcupine

porcupine-quotient
2. Finite sequences of such substructures lead us to composition series $0=I_{0} \lesseqgtr I_{1} \lesseqgtr \ldots \lesseqgtr I_{n}=R$.
3. The requirement that I_{k+1} / I_{k} is simple leads us to consideration of exactly four types of algebras.

My algebra of choice today is...

Leavitt path algebra $L_{K}(E)$ of a graph E over a field K.
It is naturally graded by \mathbb{Z} so that a path of length n is in the n-th component.
The "substructure" is a graded ideal.
Any such ideal I is generated by the set $H \cup S^{H}$ where $H=I \cap E^{0}$,
$B_{H}=\left\{v \in E^{0}-H\right.$ inf. emitter s.t. $\left.0<\left|s^{-1}(v) \cap r^{-1}\left(E^{0}-H\right)\right|<\infty\right\}$,

$$
\begin{aligned}
& \text { for } v \in B_{H}, \text { let } v^{H}=v-\sum_{e \in s^{-1}(v) \cap r^{-1}\left(E^{0}-H\right)} e e^{*}, \\
& S=\left\{v \in B_{H} \mid v^{H} \in I\right\} \text { and } S^{H}=\left\{v^{H} \mid v \in S\right\} .
\end{aligned}
$$

The vertices in B_{H} are breaking vertices.

Admissible pair $\longleftrightarrow \nrightarrow$ graded ideal

Such H is hereditary $(v \in H$ implies that the tree of v is in H) and saturated (a regular v with $r\left(s^{-1}(v)\right)$ in H is itself in H).

Conversely, if H is any hereditary and saturated set of vertices and $S \subseteq B_{H}$, then the ideal generated by $H \cup S^{H}$ is graded. The pair

$$
(H, S)
$$

is called an admissible pair and we write $I(H, S)$ for the graded ideal generated by $H \cup S^{H}$.

We want $I(H, S)$ and $L_{K}(E) / I(H, S)$ to be
Leavitt path algebras.

Quotient graph

This is an "old" construction (2006-2008).
$(E /(H, S))^{0}=E^{0}-H \cup\left\{v^{\prime} \mid v \in B_{H}-S\right\}$, (think $v \leadsto \rightsquigarrow v-v^{H}$ and $v^{\prime} \longleftrightarrow v^{H}$)
$(E /(H, S))^{1}=\left\{e \in E^{1} \mid r(e) \notin H\right\} \cup$

$$
\left\{e^{\prime} \mid e \in E^{1} \text { and } r(e) \in B_{H}-S\right\}
$$

with $\mathrm{s}\left(e^{\prime}\right)=\mathrm{s}(e), \mathrm{r}\left(e^{\prime}\right)=\mathrm{r}(e)^{\prime}$.
This ensures that CK2 holds in $E /(H, S)$ for $v \in B_{H}-S$.
Examples. Let E be $C \bullet \stackrel{\bullet}{\Longrightarrow}$ and $H=\{w\}$. Then
$B_{H}=\{v\}$ and
$E /\left(H, B_{H}\right)$ is $C \bullet^{v}$ and $E /(H, \emptyset)$ is $C \bullet^{v} \longrightarrow \bullet^{v^{\prime}}$.

Hedgehog graph

$$
\begin{aligned}
& F_{1}(H, S)=\left\{e_{1} \ldots e_{n} \text { is a path of } E \mid r\left(e_{n}\right) \in H, \mathrm{~s}\left(e_{n}\right) \notin H \cup S\right\}, \\
& F_{2}(H, S)=\{p \text { is a path of } E|r(p) \in S,|p|>0\}, \\
& F_{i}(H, S) \text { is a copy of } F_{i}(H, S), i=1,2,
\end{aligned}
$$

Then

$$
\begin{aligned}
& E_{(H, S)}^{0}=H \cup S \cup F_{1}(H, S) \cup F_{2}(H, S), \text { and } \\
& E_{(H, S)}^{1}=\left\{e \in E^{1} \mid s(e) \in H\right\} \cup\left\{e \in E^{1} \mid s(e) \in S, r(e) \in H\right\} \cup \\
& \overline{F_{1}}(H, S) \cup \overline{F_{2}}(H, S) \text { with } \\
& s(\bar{p})=p, r(\bar{p})=r(p) \text { for } \bar{p} \in \overline{F_{1}}(H, S) \cup \overline{F_{2}}(H, S) .
\end{aligned}
$$

Examples. Let E be $e C \bullet \stackrel{g}{\longrightarrow} \bullet{ }^{w}$ and $H=\{w\}$. Then $F_{1}=\left\{e^{n} g \mid n=0,1, \ldots\right\}$ and the hedgehog is

Some good and some bad news

Good

$$
L_{K}(\text { quotient graph }) \cong{ }_{\mathrm{gr}} L_{K}(E) / I(H, S)
$$

$$
L_{K}(\text { hedgehog }) \cong I(H, S)
$$

Bad

$$
L_{K}(\text { hedgehog }) \not \not \mathrm{gr} I(H, S)
$$

Indeed, if E is $\quad e G \bullet v \xrightarrow{g} \bullet^{w}$ and $H=\{w\}$,
the path eeeg (of length 4) of $I(H)$ corresponds to an edge $\overline{e e e g}$ so it has length $\mathbf{1}$ in the LPA of the hedgehog.

How to fix this?
Make the "spines" longer and get...

Porcupine graph $P_{(H, S)}$ (2021)

Keep the definitions of F_{1} and F_{2}.
For each $e \in\left(F_{1} \cup F_{2}\right) \cap E^{1}$, let w^{e} be a new vertex and f^{e} a new edge such that $s\left(f^{e}\right)=w^{e}$ and $r\left(f^{e}\right)=r(e)$.
For each path $p=e q$ where $q \in F_{1} \cup F_{2}$ and $|q| \geq 1$, add a new vertex w^{p} and a new edge f^{p} such that $s\left(f^{p}\right)=w^{p}$ and $r\left(f^{p}\right)=w^{q}$. Then let

$$
\begin{gathered}
P_{(H, S)}^{0}=H \cup S \cup\left\{w^{p} \mid p \in F_{1}(H, S) \cup F_{2}(H, S)\right\} \text { and } \\
P_{(H, S)}^{1}=\left\{e \in E^{1} \mid s(e) \in H\right\} \cup\left\{e \in E^{1} \mid \mathrm{s}(e) \in S, r(e) \in H\right\} \cup \\
\left\{f^{p} \mid p \in F_{1}(H, S) \cup F_{2}(H, S)\right\}
\end{gathered}
$$

We get a graded iso by

$$
\begin{array}{rl}
w^{p} \longleftrightarrow p p^{*}, p \in F_{1}, & w^{p} \longleftrightarrow \operatorname{pr}(p)^{H} p^{*}, p \in F_{2}, \\
f^{e p} & e p p^{*}, p \in F_{1}, \\
f^{e p} & \operatorname{epr}(p)^{H} p^{*}, p \in F_{2},
\end{array}
$$

Example

Let E be $e G \bullet^{v} \xrightarrow{g} \bullet^{w}$ and $H=\{w\}$. Then

$$
F_{1}(H)=\{g, e g, \text { eeg }, \text { eeeg }, \ldots\}
$$

and the porcupine is

We unroll the loop and make it into a single spine.
The graded iso is

$$
\text { eeeg } \leadsto \rightsquigarrow f^{e^{3} g} f^{e^{2} g} f^{e g} f^{g} \text {. }
$$

Another example

 and the hedgehog graph is the same as in the previous example. The, porcupine, on the other hand, is

Yet another example

Let E be $\bullet \xrightarrow{e_{1}} \bullet^{w} \stackrel{\rightharpoonup}{\Longrightarrow}$ and $H=\{v\}, S=\{w\}$. Here
$F_{1}(H, S)=\left\{e_{3}, e_{2} e_{3}, e_{1} e_{2} e_{3}\right\}$ and $F_{2}(H, S)=\left\{e_{1}\right\}$.
The hedgehog is

Porcupine-quotient (2023)

Given $(H, S) \leq(G, T) \quad$ (this means $H \subseteq G$ and $S \subseteq G \cup T)$

> we want to do the quotient construction with (H, S) but relative to the porcupine graph of (G, T).
and we want to get

$$
L_{K}((G, T) /(H, S)) \cong{ }_{\mathrm{gr}} I(G, T) / I(H, S)
$$

The definition of $(G, T) /(H, S)$

$B_{H}^{G}=\left\{v \in E^{0}-H\right.$ inf. emitter s.t. $\left.0<\left|s^{-1}(v) \cap r^{-1}(G-H)\right|<\infty\right\}$. $F_{1}(G-H, T-S)=\left\{e_{1} e_{2} \ldots e_{n}\right.$ is a path of $E \mid r\left(e_{n}\right) \in G-H$,

$$
\left.s\left(e_{n}\right) \notin(G-H) \cup(T-S)\right\}
$$

$F_{2}(G-H, T-S)=\{p$ is a path of $E|r(p) \in T-S,|p|>0\}$
The set of vertices is

$$
\begin{gathered}
(G-H) \cup(T-S) \cup\left\{w^{p} \mid p \in F_{1}(G-H, T-S) \cup F_{2}(G-H, T-S)\right\} \cup \\
\left\{v^{\prime} \mid v \in((G \cup T)-S) \cap B_{H}^{G}\right\} .
\end{gathered}
$$

The set of edges is
$\left\{e \in E^{1} \mid r(e) \in G-H\right.$ and either $s(e) \in G-H$ or $\left.s(e) \in T-S\right\} \cup$

$$
\begin{gathered}
\left\{f^{p} \mid p \in F_{1}(G-H, T-S) \cup F_{2}(G-H, T-S)\right\} \cup \\
\left\{e^{\prime} \mid r(e) \in((G \cup T)-S) \cap B_{H}^{G}\right\} .
\end{gathered}
$$

Example 1

$G=H \cup\left\{v_{0}, v_{1}\right\}$. Then, G / H is

The porcupine graph of H is

quotient graph E / G is $\bullet \iota_{0}$. The chain $\emptyset \leq H \leq G \leq E^{0}$ has ${ }_{-}^{\uparrow}{ }_{u_{1}}$
cofinal porcupine-quotients.

Example 2

Let E be e $\bullet_{v} \bullet_{w}$ If $H=\{w\}$, then $B_{H}=\{v\}$ and we have

$$
(\emptyset, \emptyset) \leq(H, \emptyset) \leq(H,\{v\}) \leq\left(E^{0}, \emptyset\right)
$$

$(H,\{v\}) /(H, \emptyset)$ is $\quad \bullet \quad \bullet \xrightarrow{f^{\text {eee }}} \bullet \xrightarrow{f^{e e}} \bullet \stackrel{f^{e}}{\longrightarrow}$. The porcupine graph of (H, \emptyset) is $\cdots \xrightarrow{f^{e e g_{1}}} \bullet \xrightarrow{f^{e g_{1}}} \bullet$

The quotient $E /(H,\{v\})$ is $e \zeta_{\bullet}{ }_{v}$.

Everything agrees

If $(H, S)=(\emptyset, \emptyset)$,

porcupine-quotient is
porcupine

If $G=E^{0}$ (so $T=\emptyset$),

The graded iso

$L_{K}((G, T) /(H, S)) \cong_{\mathrm{gr}} I(G, T) / I(H, S)$

$$
\begin{array}{lllll}
v & \mapsto & v & +l & \text { if } v \in(G-H)-B_{H}^{G} \cup(G \cap S), \\
v & \mapsto & v^{G-H} & +l & \text { if } v \in((G \cup T)-S)) \cap B_{H}^{G} \\
v & \mapsto & v^{G} & +I & \text { if } v \in(T-S)-B_{H}^{G} \\
w^{p} & \mapsto & p p^{*} & +l & \text { if } p \in F_{1}(G-H, T-S), \\
w^{p} & \mapsto & p r(p)^{G} p^{*} & +I & \text { if } p \in F_{2}(G-H, T-S), \\
v^{\prime} & \mapsto & v-v^{G-H} & +l & \text { if } v \in(G-S) \cap B_{H}^{G}, \\
v^{\prime} & \mapsto & v^{G}-v^{G-H} & +I & \text { if } v \in(T-S) \cap B_{H}^{G} .
\end{array}
$$

In the last two lines, the image is $v^{H}+I$.

The best part

For graph monoids and pre-ordered monoid maps:

$$
M_{(G, T) /(H, S)} \cong J(G, T) / J(H, S)
$$

For talented monoids and pre-ordered Г-monoid maps:

$$
M_{(G, T) /(H, S)}^{\ulcorner } \cong J\ulcorner(G, T) / J\ulcorner(H, S)
$$

So, the requirements that a composition series of any of these exists are equivalent:

- admissible pairs of E,
- graded ideals of $L_{K}(E)$,
- order-ideals of M_{E},
- Γ-order-ideals of M_{E}^{Γ}.

Graded simple LPAs

$L_{K}(E)$ is graded simple iff

 no nontrivial and proper admissible pairsi.e. composition series for E (equiv. L) $K(E)$) have length 1.

Three basic examples $m \rightarrow$ three primary colors.

Three types of "terminal" vertices

1. A sink connects to no other vertex in the graph except, trivially, to itself.
2. The vertices on a cycle without exits do not connect to any vertices outside of the cycle.
3. An extreme cycle is a cycle such that the range of every exit from the cycle connects back to a vertex in the cycle. The vertices in such a cycle c connect only to the vertices on cycles in the same "cluster" as c.

Example

For

v_{0} is on an extreme cycle and $\overline{\left\{v_{0}\right\}}$ is a cluster.
Composition factors:

$$
\emptyset \leq \overline{\left\{v_{0}\right\}} \leq \overline{\left\{v_{1}\right\}} \leq \overline{\left\{v_{2}\right\}}=E^{0}
$$

Four porcupine-quotients:

The fourth type

The algebra of

is graded simple but E has no sinks, no-exit nor extreme c-s.
$T(V)=$ tree of V, vertices to which $v \in V$ emits paths, $R(V)=$ root of V, vertices from which $v \in V$ receives paths.
An infinite path α of E is terminal if

- no element of $T\left(\alpha^{0}\right)$ is an infinite emitter
- or on a cycle and
- for every infinite path β with $\mathrm{s}(\beta) \in \alpha^{0}, T\left(\beta^{0}\right) \subseteq R\left(\beta^{0}\right)$.

Everything that originates in α comes back to α.

Examples

Each infinite path is terminal:

None of the infinite paths is terminal:

Formal definition of a "cluster"

A vertex $v \in E^{0}$ is terminal if it is a sink, on a cycle without exits, on an extreme cycle, or on a terminal path.
The cluster of a terminal vertex v is
$\left\{w \in E^{0} \mid R\left(p^{0}\right)=R\left(q^{0}\right)\right.$ for all $\left.p, q \in E^{\leq \infty} v \in p^{0}, w \in q^{0}\right\}$ $E^{\leq \infty}=$ infinite paths or finite paths with range not regular.

Exactly four examples:

1. The cluster of a sink v is $\{v\}=T(v)$.
2. The cluster of $v \in c^{0}$ for c no-exit is $c^{0}=T\left(c^{0}\right)$.
3. The cluster of $v \in c^{0}$ for c extreme is $T\left(c^{0}\right)$.
4. The cluster of $v \in \alpha^{0}$ for α terminal is $\bigcup T\left(\beta^{0}\right)$ where β is terminal with $R\left(\alpha^{0}\right)=R\left(\beta^{0}\right)$.

Four color characterization of graded simplicity

$L_{K}(E)$ is graded simple (E is cofinal) iff exactly one of the following holds.

1. $E^{0}=\overline{\{v\}}$ for v a sink. If so, E is row-finite and acyclic.
2. $E^{0}=\overline{c^{0}}$ for a cycle c without exits. If so, E is row-finite and c is the only cycle.
3. $E^{0}=\overline{c^{0}}$ for an extreme cycle c. If so, every cycle is extreme and every inf. emitter is on a cycle.
4. $E^{0}=\overline{\alpha^{0}}$ for a terminal path α. If so, E is row-finite and acyclic.

Corollaries. $L_{K}(E)$ is simple iff 1,3 , or 4 hold.
$L_{K}(E)$ is (graded) purely infinite simple iff 3 holds.

Comparison with Trichotomy Principle

Trichotomy Principle. $L_{K}(E)$ is graded simple iff exactly one of the following holds.

1. $L_{K}(E)$ is locally matricial.
2. $L_{K}(E) \cong \mathbb{M}_{\kappa}\left(K\left[x, x^{-1}\right]\right)$ for a cardinal κ.
3. $L_{K}(E)$ is purely-infinite simple.

The four-color characterization does not contradicts this. It

- refines 1 and
- gives a graph, not algebra, characterization.

Necessary cond. for having a composition series

Let

$$
\operatorname{Ter}(E)=\overline{\text { terminal vertices }}=
$$

$\overline{\text { sinks }} \cup \overline{\text { no-exits }} \cup \overline{\text { extremes }} \cup \overline{\text { terminal paths }}$.
If E^{0} is finite, $I(\operatorname{Ter}(E))$ has been known as $I_{\text {cee }}$.

If a graph E has a composition series, the following hold.
(a) $\operatorname{Ter}(E)$ is nonempty.
(b) The set of terminal vertices of E contains finitely many clusters.
(c) The set of breaking vertices of $\operatorname{Ter}(E)$ is finite.

3 types of graphs not having a composition series

$\operatorname{Ter}(E)$ is empty:

Infinitely many clusters:
Infinitely many breaking vertices of $\operatorname{Ter}(E)$:

Characterization of having a composition series

One more type of obstruction

Define the composition quotients F_{n} of E. Let $F_{0}=E$. If $\operatorname{Ter}\left(F_{n}\right) \subsetneq F_{n}^{0}$, let

$$
F_{n+1}=F_{n} /\left(\operatorname{Ter}\left(F_{n}\right), B_{\operatorname{Ter}\left(F_{n}\right)}\right)
$$

If $\operatorname{Ter}\left(F_{n}\right)=F_{n}^{0}$, let $F_{n+1}=F_{n+2}=\ldots=\emptyset$.
The graph E has a composition series iff

1. Conditions (a), (b), and (c) hold for F_{n} for each n for which $F_{n} \neq \emptyset$.
2. There is $n \geq 0$ such that $F_{n+1}=\emptyset$ and $F_{n} \neq \emptyset$.

Example

If E is

then $\operatorname{Ter}(E)=\overline{\left\{v_{0}\right\}}$ so F_{1} is

$\operatorname{Ter}\left(F_{1}\right)=\overline{\left\{v_{1}\right\}}$ so F_{2} is
$\bullet_{v_{2}}$

This gives us the composition series

$$
\emptyset \leq \overline{\left\{v_{0}\right\}} \leq \overline{\left\{v_{1}\right\}} \leq \overline{\left\{v_{2}\right\}}=E^{0} .
$$

The proof is constructive. A corollary.

If C_{1}, \ldots, C_{n} are clusters in $\operatorname{Ter}(E)$, start by

$$
(\emptyset, \emptyset) \leq\left(\overline{C_{1}}, \emptyset\right) \leq\left(\overline{C_{1}} \cup \overline{C_{2}}, \emptyset\right) \leq \ldots(\operatorname{Ter}(E), \emptyset)
$$

If v_{1}, \ldots, v_{m} are breaking vertices of $\operatorname{Ter}(E)$, continue with
$(\operatorname{Ter}(E), \emptyset) \leq\left(\operatorname{Ter}(E),\left\{v_{1}\right\}\right) \leq\left(\operatorname{Ter}(E),\left\{v_{1}, v_{2}\right\}\right) \leq \ldots$
$\left(\operatorname{Ter}(E), B_{\operatorname{Ter}(E)}\right)$.
"Extend" a series for F_{1} by $\left(\operatorname{Ter}(E), B_{\operatorname{Ter}(E)}\right)$ and append it to this.

Corollary.

Every unital $L_{K}(E)$ has a graded composition series.

Surprising? Yes - LPAs appear to be "wilder" than this. No - there are fin many vertices and we are cutting nonzero many in each step.

Talented monoid

For $v \in E^{0},\langle[v]\rangle$ is minimal iff v is terminal.
If v is a terminal vertex,

M_{E}^{Γ}	E
[v] periodic	$\leftrightarrow m$ v in $\overline{\text { no-exits }}$
[v] aperiodic	$\leftrightarrow \leadsto v$ in $\overline{\text { extremes }}$
[v] incomparable	$\leftrightarrow \quad v$ in $\overline{\text { sink }}$ or in

Also, characterization when all factors of M_{E}^{Γ} are of only one or only two types. E.g.

- $M_{(G, T) /(H, S)}^{\Gamma}$ is periodic or incomparable iff the cycle of E are disjoint.
- $M_{(G, T) /(H, S)}^{\Gamma}$ is incomparable iff E is acyclic.

Questions

- What other useful corollaries we get for LPAs with finite composition series?
- How to realize the idea from the beginning of the talk?
- Does the porcupine-quotient construction has a groupoid generalization?

Full papers on porcupine and porcupine-quotients are on arXiv and at http://liavas.net

