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Substructures and quotients

A very general question: given a short exact sequence

0→ I → R → R/I → 0

how to patch the information from I and R/I to
recover the information on R?

More specifically, given g and h, how to get f ?

0 // I //

g

��

R //

f
��

R/I //

h
��

0

0 // J // S // S/J // 0



Where do these questions come from?

Let R , S be your favourite graph (or groupoid) algebras and
I , J their appropriate substructures. Let R , S , etc, denote
some exact functor (e.g. pointed K gr

0 ).

Having

0 // I //

��

R //

��

R/I //

��

0

0 // J // S // S/J // 0

and getting isomorphisms g and h using some inductive
process, we would like to have an iso f as below.

0 // I //

g

��

R //

f
��

R/I //

h
��

0

0 // J // S // S/J // 0



This brings us to the following ...

1. Substructures and quotients can also be represented as
algebras of graphs (or groupoids).

2. Finite sequences of such substructures lead us to
composition series 0 = I0 � I1 � . . . � In = R .

3. The requirement that Ik+1/Ik is simple leads us to
consideration of exactly four types of algebras.



My algebra of choice today is...

Leavitt path algebra LK (E ) of a graph E over a field K .

It is naturally graded by Z so that a path of length n is in the
n-th component.

The “substructure” is a graded ideal.

Any such ideal I is generated by the set H ∪ SH where
H = I ∩ E 0,

BH = {v ∈ E 0−H inf. emitter s.t. 0 < |s−1(v)∩r−1(E 0−H)| <∞},

for v ∈ BH , let vH = v −
∑

e∈s−1(v)∩r−1(E0−H)

ee∗,

S = {v ∈ BH | vH ∈ I} and SH = {vH | v ∈ S}.

The vertices in BH are breaking vertices.



Admissible pair ! graded ideal

Such H is hereditary (v ∈ H implies that the tree of v is in
H) and saturated (a regular v with r(s−1(v)) in H is itself in
H).

Conversely, if H is any hereditary and saturated set of
vertices and S ⊆ BH , then the ideal generated by H ∪ SH is
graded. The pair

(H , S)

is called an admissible pair and we write I (H , S) for the
graded ideal generated by H ∪ SH .

We want I (H , S) and LK (E )/I (H , S) to be

Leavitt path algebras.



Quotient graph

This is an “old” construction (2006-2008).

(E/(H , S))0 = E 0 − H ∪ {v ′ | v ∈ BH − S},
(think v ! v − vH and v ′ ! vH)

(E/(H , S))1 = {e ∈ E 1 | r(e) /∈ H}∪
{e ′ | e ∈ E 1 and r(e) ∈ BH − S},

with s(e ′) = s(e), r(e ′) = r(e)′.
This ensures that CK2 holds in E/(H , S) for v ∈ BH − S .

Examples. Let E be •v77 44//
** $$ •w and H = {w}. Then

BH = {v} and

E/(H ,BH) is •v77 and E/(H , ∅) is •v77 // •v ′ .



Hedgehog graph

F1(H , S) = {e1 . . . en is a path of E | r(en) ∈ H , s(en) /∈ H ∪ S},
F2(H , S) = {p is a path of E | r(p) ∈ S , |p| > 0},
Fi(H , S) is a copy of Fi(H , S), i = 1, 2,

Then

E 0
(H,S) = H ∪ S ∪ F1(H , S) ∪ F2(H , S), and

E 1
(H,S) = {e ∈ E 1 | s(e) ∈ H} ∪ {e ∈ E 1 | s(e) ∈ S , r(e) ∈ H}∪

F1(H , S) ∪ F2(H , S) with
s(p) = p, r(p) = r(p) for p ∈ F1(H , S) ∪ F2(H , S).

Examples. Let E be •ve 77
g // •w and H = {w}. Then

F1 = {eng |n = 0, 1, . . .} and the hedgehog is •

��

•

��

◦

��
• // • ◦oo



Some good and some bad news

Good
LK (quotient graph) ∼=gr LK (E )/I (H , S)

LK (hedgehog) ∼= I (H , S)

Bad
LK (hedgehog) �gr I (H , S)

Indeed, if E is •ve 77
g // •w and H = {w},

the path eeeg (of length 4) of I (H) corresponds to an edge
eeeg so it has length 1 in the LPA of the hedgehog.

How to fix this?
Make the “spines” longer and get...



Porcupine graph P(H ,S) (2021)

Keep the definitions of F1 and F2.

For each e ∈ (F1 ∪ F2)∩ E 1, let w e be a new vertex and f e a
new edge such that s(f e) = w e and r(f e) = r(e).

For each path p = eq where q ∈ F1 ∪ F2 and |q| ≥ 1, add a
new vertex wp and a new edge f p such that s(f p) = wp

and r(f p) = wq. Then let

P0
(H,S) = H ∪ S ∪ {wp | p ∈ F1(H , S) ∪ F2(H , S)} and

P1
(H,S) = {e ∈ E 1 | s(e) ∈ H} ∪ {e ∈ E 1 | s(e) ∈ S , r(e) ∈ H}∪

{f p | p ∈ F1(H , S) ∪ F2(H , S)}
We get a graded iso by

wp ! pp∗, p ∈ F1, wp ! pr(p)Hp∗, p ∈ F2,

f ep ! epp∗, p ∈ F1, f ep ! epr(p)Hp∗, p ∈ F2,



Example

Let E be •ve 77
g // •w and H = {w}. Then

F1(H) = {g , eg , eeg , eeeg , . . .}

and the porcupine is

// •w e2g f e
2g
// •w eg f eg // •wg f g // •w

We unroll the loop and make it into a single spine.

The graded iso is

eeeg ! f e
3g f e

2g f eg f g .



Another example

•

e

��

g

YY
h // • and H = {w}. Then

F1(H) = {h, eh, gh, eeh, egh, geh, ggh, eeeh, . . .}
and the hedgehog graph is the same as in the previous
example. The, porcupine, on the other hand, is

•

•

OO

•

77

•

gg

•

??

•

__

•

??

•

__



Yet another example

Let E be • e1 // •w 44//
**$$

e2

��

•v

•
e3

==

// •

and H = {v}, S = {w}. Here

F1(H , S) = {e3, e2e3, e1e2e3} and F2(H , S) = {e1}.
The hedgehog is

•
e3

��

e3

•e1
e1 // •w 44//

**$$ •v •e2e3
e2e3oo

•
e1e2e3

OO

e1e2e3The porcupine is

•w e1 f e1 // •w 44//
**$$ •v •w e3f e3oo •w e2e3f e2e3oo •w e1e2e3f e1e2e3oo



Porcupine-quotient (2023)

Given (H , S) ≤ (G ,T ) (this means H ⊆ G and S ⊆ G ∪ T )

we want to do the quotient
construction with (H , S) but
relative to the porcupine

graph of (G ,T ).

and we want to get

LK ((G ,T )/(H , S)) ∼=gr I (G ,T )/I (H , S).



The definition of (G ,T )/(H , S)

BG
H = {v ∈ E 0−H inf. emitter s.t. 0 < |s−1(v)∩r−1(G−H)| <∞}.

F1(G−H ,T−S) = {e1e2 . . . en is a path of E | r(en) ∈ G−H ,
s(en) /∈ (G − H) ∪ (T − S)}

F2(G −H ,T −S) = {p is a path of E | r(p) ∈ T −S , |p| > 0}
The set of vertices is

(G−H)∪(T−S)∪{wp | p ∈ F1(G−H ,T−S)∪F2(G−H ,T−S)}∪
{v ′ | v ∈ ((G ∪ T )− S) ∩ BG

H }.
The set of edges is

{e ∈ E 1 | r(e) ∈ G−H and either s(e) ∈ G−H or s(e) ∈ T−S}∪
{f p | p ∈ F1(G − H ,T − S) ∪ F2(G − H ,T − S)}∪

{e ′ | r(e) ∈ ((G ∪ T )− S) ∩ BG
H }.



Example 1

Let E be •u0 •v0 •w0

•u1

e //

OO

•v1

g //

OO

•w1

OO
and let H = {w0,w1} and

G = H ∪ {v0, v1}. Then, G/H is •v0

• f e // •v1

OO
.

The porcupine graph of H is •w0

• f eg // • f g // •w1

OO
and the

quotient graph E/G is •u0

•u1

OO
. The chain ∅ ≤ H ≤ G ≤ E 0 has

cofinal porcupine-quotients.



Example 2

Let E be •ve 66 44//
** ""•w If H = {w}, then BH = {v} and

we have
(∅, ∅) ≤ (H , ∅) ≤ (H , {v}) ≤ (E 0, ∅)

(H , {v})/(H , ∅) is • f eee // • f ee // • f e // •v . The

porcupine graph of (H , ∅) is • f eeg1 // • f eg1 // •
f g1

  
• f eeg2 // • f eg2 // • f g2 // •w

• f eeg3 // • f eg3 // •
f g3

>>

•

.

The quotient E/(H , {v}) is •ve 66 .



Everything agrees

If (H , S) = (∅, ∅),

If G = E 0 (so T = ∅),



The graded iso

LK ((G ,T )/(H , S)) ∼=gr I (G ,T )/I (H , S)

v 7→ v +I if v ∈ (G − H)− BG
H ∪ (G ∩ S),

v 7→ vG−H +I if v ∈ ((G ∪ T )− S)) ∩ BG
H

v 7→ vG +I if v ∈ (T − S)− BG
H ,

wp 7→ pp∗ +I if p ∈ F1(G − H ,T − S),
wp 7→ pr(p)Gp∗ +I if p ∈ F2(G − H ,T − S),
v ′ 7→ v − vG−H +I if v ∈ (G − S) ∩ BG

H ,
v ′ 7→ vG − vG−H +I if v ∈ (T − S) ∩ BG

H .

In the last two lines, the image is vH + I .



The best part

For graph monoids and pre-ordered monoid maps:

M(G ,T )/(H,S)
∼= J(G ,T )/J(H , S)

For talented monoids and pre-ordered Γ-monoid maps:

MΓ
(G ,T )/(H,S)

∼= JΓ(G ,T )/JΓ(H , S).

So, the requirements that a composition series of any of
these exists are equivalent:

I admissible pairs of E ,

I graded ideals of LK (E ),

I order-ideals of ME ,

I Γ-order-ideals of MΓ
E .



Graded simple LPAs

LK (E ) is graded simple iff
no nontrivial and proper admissible pairs

i.e. composition series for E (equiv. L)K (E )) have length 1.

Three basic examples ! three primary colors.

• // • // • • // • •
��

• eeqq
��
QQ



Three types of “terminal” vertices

1. A sink connects to no other vertex in the graph except,
trivially, to itself.

2. The vertices on a cycle without exits do not connect to
any vertices outside of the cycle.

3. An extreme cycle is a cycle such that the range of every
exit from the cycle connects back to a vertex in the cycle.
The vertices in such a cycle c connect only to the vertices
on cycles in the same “cluster” as c .



Example

For
•v2 66//

(( !! • // •v1

�� // •v0

!!
•

ee

��
•
��

``

v0 is on an extreme cycle and {v0} is a cluster.

Composition factors:

∅ ≤ {v0} ≤ {v1} ≤ {v2} = E 0.

Four porcupine-quotients: •v2

•

��
• // • // •v1

��

•

??

•

• // • // •v0

��
•

bb
��
•
��

]]

•

OO

•

OO

•

??

•

OO

• •

bb <<

•

OO

•

aa



The fourth type

The algebra of

• >>
��
• >>

��
• >>

��
•

is graded simple but E has no sinks, no-exit nor extreme c-s.

T (V ) = tree of V , vertices to which v ∈ V emits paths,
R(V ) = root of V , vertices from which v ∈ V receives paths.

An infinite path α of E is terminal if

I no element of T (α0) is an
infinite emitter

I or on a cycle and

I for every infinite path β with
s(β) ∈ α0, T (β0) ⊆ R(β0).

Everything that originates in α comes back to α.



Examples

Each infinite path is terminal:

• // • // • // • • >>
��
• >>

��
• >>

��
•

None of the infinite paths is terminal:

•
�� // •

�� // •
�� // •

��

• 66//
(( ��• 66//

(( ��• 66//
(( ��•

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO



Formal definition of a “cluster”

A vertex v ∈ E 0 is terminal if it is a sink, on a cycle without
exits, on an extreme cycle, or on a terminal path.

The cluster of a terminal vertex v is
{w ∈ E 0 | R(p0) = R(q0) for all p, q ∈ E≤∞ v ∈ p0,w ∈ q0}
E≤∞ = infinite paths or finite paths with range not regular.

Exactly four examples:

1. The cluster of a sink v is {v} = T (v).

2. The cluster of v ∈ c0 for c no-exit is c0 = T (c0).

3. The cluster of v ∈ c0 for c extreme is T (c0).

4. The cluster of v ∈ α0 for α terminal is
⋃
T (β0) where β

is terminal with R(α0) = R(β0).



Four color characterization of graded simplicity

LK (E ) is graded simple (E is cofinal) iff exactly one of the
following holds.

1. E 0 = {v} for v a sink. If so, E is row-finite and acyclic.

2. E 0 = c0 for a cycle c without exits. If so, E is row-finite
and c is the only cycle.

3. E 0 = c0 for an extreme cycle c . If so, every cycle is
extreme and every inf. emitter is on a cycle.

4. E 0 = α0 for a terminal path α. If so, E is row-finite and
acyclic.

Corollaries. LK (E ) is simple iff 1, 3, or 4 hold.

LK (E ) is (graded) purely infinite simple iff 3 holds.



Comparison with Trichotomy Principle

Trichotomy Principle. LK (E ) is graded simple iff exactly
one of the following holds.

1. LK (E ) is locally matricial.

2. LK (E ) ∼= Mκ(K [x , x−1]) for a cardinal κ.

3. LK (E ) is purely-infinite simple.

The four-color characterization does not contradicts this. It

I refines 1 and

I gives a graph, not algebra, characterization.



Necessary cond. for having a composition series

Let
Ter(E ) = terminal vertices =

sinks ∪ no-exits ∪ extremes ∪ terminal paths.

If E 0 is finite, I (Ter(E )) has been known as Ilce .

If a graph E has a composition series, the following hold.

(a) Ter(E ) is nonempty.

(b) The set of terminal vertices of E contains finitely many
clusters.

(c) The set of breaking vertices of Ter(E ) is finite.



3 types of graphs not having a composition series

Ter(E ) is empty:

•
�� // •

�� // •
�� // •

��

• 66//
(( ��• 66//

(( ��• 66//
(( ��•

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

• //

OO

Infinitely many clusters: • • •
Infinitely many breaking vertices of Ter(E ) :

•

• //

∞
OO

• //
∞

__

•
∞

gg



Characterization of having a composition series

One more type of obstruction

•
�� // •

�� // •
��

Define the composition quotients Fn of E . Let F0 = E .
If Ter(Fn) ( F 0

n , let

Fn+1 = Fn/(Ter(Fn),BTer(Fn)).

If Ter(Fn) = F 0
n , let Fn+1 = Fn+2 = . . . = ∅.

The graph E has a composition series iff

1. Conditions (a), (b), and (c) hold for Fn for each n for
which Fn 6= ∅.

2. There is n ≥ 0 such that Fn+1 = ∅ and Fn 6= ∅.



Example

If E is

•v2 66//
(( !! • // •v1

�� // •v0

!!
•

ee

��
•
��

``

then Ter(E ) = {v0} so F1 is

•v2 66//
(( !! • // •v1

��

Ter(F1) = {v1} so F2 is
•v2

This gives us the composition series

∅ ≤ {v0} ≤ {v1} ≤ {v2} = E 0.



The proof is constructive. A corollary.

If C1, . . . ,Cn are clusters in Ter(E ), start by

(∅, ∅) ≤ (C1, ∅) ≤ (C1 ∪ C2, ∅) ≤ . . . (Ter(E ), ∅).

If v1, . . . , vm are breaking vertices of Ter(E ), continue with

(Ter(E ), ∅) ≤ (Ter(E ), {v1}) ≤ (Ter(E ), {v1, v2}) ≤ . . .

(Ter(E ),BTer(E)).

“Extend” a series for F1 by (Ter(E ),BTer(E)) and append it to
this.

Corollary.

Every unital LK (E ) has a graded composition series.

Surprising? Yes – LPAs appear to be “wilder” than this.
No – there are fin many vertices and we are cutting nonzero
many in each step.



Talented monoid

For v ∈ E 0, 〈[v ]〉 is minimal iff v is terminal.

If v is a terminal vertex,

MΓ
E E

[v ] periodic ! v in no-exits
[v ] aperiodic ! v in extremes
[v ] incomparable ! v in sink or in terminal paths

Also, characterization when all factors of MΓ
E are of only one

or only two types. E.g.

I MΓ
(G ,T )/(H,S) is periodic or incomparable iff the cycle of E

are disjoint.

I MΓ
(G ,T )/(H,S) is incomparable iff E is acyclic.



Questions

I What other useful corollaries we get for LPAs with finite
composition series?

I How to realize the idea from the beginning of the talk?

I Does the porcupine-quotient construction has a groupoid
generalization?

Full papers on porcupine and porcupine-quotients are on arXiv
and at http://liavas.net


