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Composition series

A very general question: given a composition series
Ozloﬁllggln:R
(so liy1/1; is simple).

how to patch the information from its components
to recover the information on R?

Let R = your favorite graph (or groupoid) algebra and /; their
appropriate substructures.

For me, R = Lx(E) is a Leavitt path algebra with its
grading and ; = I(H;, S;) for an admissible pair (H;, S;).

Everything | say also holds for graph C*-algebras.



And now imagine....

1. ... that we know such a composition series exists.

2. ... that each composition quotient /(H;y1, Si+1)/1(H:, Si)
is again a LPA, say of E;.
3. and that we have a method of proving that

if the Graded Classification Conjecture (GCC) holds
for each E;,

then it holds for E.



about 1. to 3. become real, then that plus

4. The GCC holds for cofinal graphs with a sink or a cycle
without exits.
implies that
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quotient porcupine porcupine-quotient

The quotient graph construction is “old” (2006-2008).

By = {v} and

E/(H,By) is C‘V and  E/(H,0)is C.v_>.v’.
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Hedgehog graph

H,s(e,) ¢ HU S},

Fi(H,S) ={e1...e,is a path of E | r(e,) €
|p| >0},

S
Fa(H,S) ={pis apath of E | r(p) € S,
Fi(H,S) is a copy of Fj(H,S),i=1,2,

Then

E(H sy=HUSUF(H,S)U F(H,S), and
E(lHS)f{ee Ellsie) e Htu{e € E'|s(e) € S,r(e) € H}U
ll:l(H7 5) U FQ(H, 5) with

s(5) = p.1(p) = r(p) for p € Fy(H, S) UFa(H, 5).
Examples. Let E be eCoV—g>oW and H = {w}. Then

F1 ={e"gln=0,1,...} and the hedgehog is e ° o



Positives
Li(quotient graph) =, Lx(E)/I(H,S)

Lk (hedgehog) = I(H, S)
Negatives

LK(hedgehog) %gr I(H7 S)
Indeed, if Eis  «(_ e’ —">* and H = {w},

the path eeeg (of length 4) of /(H) corresponds to an edge
eeeg so it has length 1 in the LPA of the hedgehog.




Porcupine graph P4 sy (2021)

Keep the definitions of F; and F,.

For each e € (F; U /) N EY, let w® be a new vertex and 7€ a
new edge such that s(¢) = w® and r(f¢) = r(e).

For each path p = eq where g € F; U F, and |g| > 1, add a
new vertex w” and a new edge f” such that s(f?) = w”
and r(fP) = w9. Then let

Plusy=HUSU{w? | p e F(H,S)U Fy(H,S)} and
P(l,_,vs) ={ec E'|s(e)c H} U{ec E'|s(e) € S,r(e) € H}U
{fP|pe€ F(H,S)UF(H,S)}
We get a graded iso by
wP e pp*,p € F1, wP e pr(p)’p*, p € F,
P« epp*,p € Fy, % o epr(p)p*, p € Fy,



Let E be eC.v—g>.W and H = {w}. Then

Fl(H) = {ga €g, €eeg, eceg,
and the porcupine is

)

° [ 34
The graded iso is

ceeg «~s FOEFTEFELE,




oF

e——>e and H={w}. Then
7

Fi(H) = {h, eh, gh, eeh, egh, geh, ggh, eeeh, ...}
and the hedgehog graph is the same as in the previous
example. The, porcupine, on the other hand, is

|
/ \? ?/
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Given (H,S) < (G, T) (thismeans HC Gand SC GUT)

and we want to get

Lk((G, T)/(H,5)) =g 1(G, T)/I(H,S).

=] 5 = = E DA



The definition of (G, T)/(H,S)

B = {v € E°>~H inf. emitter s.t. 0 < |s"}(v)Nr }(G—H)| < oc}.
Fi(G—H, T—S)={eiex...e,is a path of E | r(e,) € G—H,
s(en) € (G = H)U(T = 5)}
Fo(G—H, T—S)={pisapathof E|r(p)e T—S,|p| >0}
The set of vertices is
(G—H)U(T-S)UHA{wP | pe Fi(G—H, T-S)UF(G—H, T-S)}U
{Vve((GUT)-S)NnBS}.
The set of edges is
{e € E* | r(e) € G—H and either s(e) € G—H or s(e) € T—S}U
{fPlpe A(G—H, T—S)UF(G—-H,T-S)}U
{e'|r(e) e ((GUT)—S)NBS}.



Let £ be o, °,

o,, and let H = {wy, w;} and
L]
.Ul

_>.V1_>

.Wl
G=HU {Vo, V]_}. Then, G/H is

°, -

. |

o —>0

Vi
The porcupine graph of H is

e,, and the

feg & T
o—>0

—_— e
quotient graph £/G is e, . The chain ) < H < G < E° has

|

u
cofinal porcupine-quotients.
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we have

(0.0) < (H.0) < (H.{v}) < (E°.0)

(HAVD/(H, D) is ot a "0 The
porcupine graph of (H, ) is - o———>~e——>o

feegr fes2 &
[ J [ ]

feesgs fees

.............. e——o0— 0

The quotient E/(H, {v}) is eCov .
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If (H,S) = (0,0),

Y-

porcupine-quotient is porcupine

If G=E°(so T =0),

%Y, -

porcupine-quotient s

quotient
= E = 9HAE



For graph monoids and pre-ordered monoid maps:

For talented monoids and pre-ordered [-monoid maps:

So, the requirements that a composition series of any of
these exists are equivalent:

» admissible pairs of E,
> graded ideals of Lk (E),
» order-ideals of Mg,

» [-order-ideals of ML.
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Graded simple LPAs

Lk (E) is graded simple iff
no nontrivial and proper admissible pairs

i.e. composition series for E (equiv. Lx(E)) have length 1.

Three basic examples «~ three primary colors.




Three types of “terminal” vertices

1. A sink connects to no other vertex in the graph except,
trivially, to itself.

2. The vertices on a cycle without exits do not connect to
any vertices outside of the cycle.

3. An extreme cycle is a cycle such that the range of every

exit from the cycle connects back to a vertex in the cycle.
The vertices in such a cycle ¢ connect only to the vertices
on cycles in the same “cluster” as c.




The fourth type

The algebra of

7N TN TN
) ° )
N T N T

is graded simple but E has no sinks, no-exit nor extreme c-s.

T(V) = tree of V, vertices to which v € V emits paths,
R(V) = root of V/, vertices from which v € V receives paths.

An infinite path « of E is terminal if

» no element of T(a®) is an
infinite emitter

» or on a cycle and
» for every infinite path 3 with
s(B) € a®, T(8%) € R(8°).

Everything that originates in & comes back to «.




Each infinite path is terminal:

o000 L
N
e, 1



Four color characterization of graded simplicity

Lk(E) is graded simple (E is cofinal) iff exactly one of the
following holds.
1. E° = m for v a sink. If so, E is row-finite and acyclic.
2. E9 = ¢ for a cycle ¢ without exits. If so, E is row-finite
and c is the only cycle.

3. E% = 0 for an extreme cycle c. If so, every cycle is
extreme and every inf. emitter is on a cycle.

4. E® = @ for a terminal path a. If so, E is row-finite and

acyclic.

Corollaries. Lx(E) is simple iff 1, 3, or 4 hold.
Lk(E) is (graded) purely infinite simple iff 3 holds.



Comparison with Trichotomy Principle

Trichotomy Principle. Lx(E) is graded simple iff exactly
one of the following holds.

1. Lk(E) is locally matricial.
2. Lx(E) = M, (K[x,x]) for a cardinal .
3. Lk(E) is purely-infinite simple.

The four-color characterization does not contradicts this. It
» refines 1 and

» gives a graph, not algebra, characterization.



Let

Ter(E) = terminal vertices =

sinks U no-exits U extremes U terminal paths.

If E® is finite, /(Ter(E)) has been known as /.
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3 types of graphs not having a composition series

Ter(E) is empty:

O000
N
e, ]

Infinitely many clusters: . ° CR——

Infinitely many breaking vertices of Ter(E) :




One more type of obstruction

Define the composition quotients F, of E. Let Fp = E.
If Ter(F,) C FP, let

F,H_]_ = F,,/(Ter(F,,), BTer(Fn))-
If Ter(F,) = FO, let Fpyy = Fpin = ... = 0.
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The proof is constructive. A corollary.

If Ci,...,C, are clusters in Ter(E), start by
0,0) < (G,0) < (GUG,0) < ...(Ter(E), D).
If vi,..., vy are breaking vertices of Ter(E), continue with
(Ter(E), D) < (Ter(E),{wi}) < (Ter(E),{wv1,va}) < ...

(Ter(E), BTer(E))~
“Extend” a series for F1 by (Ter(E), Brer(g)) and append it to
this.

Corollary.
Every unital Lx(E) has a graded composition series.

Surprising?  Yes — LPAs appear to be “wilder” than this.
No — there are fin many vertices and we are cutting nonzero
many in each step.



We have 4.

GCC holds for cofinal graphs with sinks and no-exit

cycles.

Moreover, TFAE for a cofinal graph E with a sink or a no-exit
cycle and any graph F.
1. The talented monoid are “pointed” isomorphic.

2. F is cofinal with the same type of the terminal cluster is
the same (m = 0 if sink m > 0 if cycle of length m) and
the number and the lengths of paths ending in a terminal
vertex are the same modulo m.

Say E = F in this case.

3. The algebras are graded isomorphic.



Graph condition for GCC for disjoint cycles

If E has a finite composition series and disjoint cycles, and F
is any graph.

1. The talented monoid are “pointed” isomorphic.

2. ExF

3. The algebras are graded isomorphic.

fn=20<H<E%and ) < G < F°, then E =~ F if
» The porcupine parts match Py =~ Pg
» The quotient parts match E/H ~ F/G, and

» The numbers and lengths of paths from the terminal
cluster of E/H to the terminal cluster of Py match the
corresponding numbers and lengths for F/G and Pg.



Canonical form and deflated graphs

Let E be

(Co——e

Then each of the graphs below is an out-splits of E.

(Co—s0—>e e . . .

So, before you count the paths for the last requirement, you
have to ensure your graph is the “smallest” in the same sense
as E is the smaller than the graphs above.

A graph is deflated if it no out-amalgamations making it
“smaller” are possible.



Canonical form and neat graphs

For an infinite emitter v emitting paths to a terminal cluster,
you want to count only the paths such that there is infinitely
many of those of the same length.

A 1 T
!

o<—0 ([ ] ([ ]
[ ]

AN

The last graph is the neat form of the first.

)

o———0—>0

|
|



Canonical form and combed-out graphs

You also want to comb out all the loose “hair” sticking out.

~. O

The second graph is the combed-out form of the first.

When you have your graph in a canonical form (deflated,
neat, and combed-out), then you can start counting the paths.



Example with four deflated graphs

Let E1, B>, E3, and E4 be the four graphs below.

Row and column permutations leave all these different.



You also have to count the in-between vertices

These two show that you do not want to consider the lengths
modulo the length of the terminal cycle.

This graph and the second above show that the number of
in-between vertices matters.



A hope for settling GCC for all graphs

» Show the GCC for cofinal graphs with extreme cycles.

The methods of the “step 3" would work to show that
GCC holds for all E with a composition series.
And more:

» Define ~ so that TFAE

1. The talented monoid are pointed isomorphic.
2. E~F
3. The algebras are graded isomorphic.




