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Composition series

A very general question: given a composition series

0 = I0 � I1 � . . . � In = R

(so Ii+1/Ii is simple).

how to patch the information from its components
to recover the information on R?

Let R = your favorite graph (or groupoid) algebra and Ii their
appropriate substructures.

For me, R = LK (E ) is a Leavitt path algebra with its
grading and Ii = I (Hi , Si) for an admissible pair (Hi , Si).

Everything I say also holds for graph C ∗-algebras.



And now imagine....

1. ... that we know such a composition series exists.

2. ... that each composition quotient I (Hi+1, Si+1)/I (Hi , Si)
is again a LPA, say of Ei .

3. and that we have a method of proving that

if the Graded Classification Conjecture (GCC) holds
for each Ei ,

then it holds for E .



And if your thoughts and dreams ...

about 1. to 3. become real, then that plus

4. The GCC holds for cofinal graphs with a sink or a cycle
without exits.

implies that

The Graded Classification Conjecture holds for
graphs with disjoint cycles



Making 2. happen

The quotient graph construction is “old” (2006-2008).

Examples. Let E be •v77 44//
** $$ •w and H = {w}. Then

BH = {v} and

E/(H ,BH) is •v77 and E/(H , ∅) is •v77 // •v ′
.



Hedgehog graph

F1(H , S) = {e1 . . . en is a path of E | r(en) ∈ H , s(en) /∈ H ∪ S},
F2(H , S) = {p is a path of E | r(p) ∈ S , |p| > 0},
Fi(H , S) is a copy of Fi(H , S), i = 1, 2,

Then

E 0
(H,S) = H ∪ S ∪ F1(H , S) ∪ F2(H , S), and

E 1
(H,S) = {e ∈ E 1 | s(e) ∈ H} ∪ {e ∈ E 1 | s(e) ∈ S , r(e) ∈ H}∪

F1(H , S) ∪ F2(H , S) with
s(p) = p, r(p) = r(p) for p ∈ F1(H , S) ∪ F2(H , S).

Examples. Let E be •ve 77
g // •w and H = {w}. Then

F1 = {eng |n = 0, 1, . . .} and the hedgehog is •
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Some positives and some negatives

Positives

LK (quotient graph) ∼=gr LK (E )/I (H , S)

LK (hedgehog) ∼= I (H , S)

Negatives
LK (hedgehog) �gr I (H , S)

Indeed, if E is •ve 77
g // •w and H = {w},

the path eeeg (of length 4) of I (H) corresponds to an edge
eeeg so it has length 1 in the LPA of the hedgehog.

How to fix this?
Make the “spines” longer and get...



Porcupine graph P(H ,S) (2021)

Keep the definitions of F1 and F2.

For each e ∈ (F1 ∪ F2)∩ E 1, let w e be a new vertex and f e a
new edge such that s(f e) = w e and r(f e) = r(e).

For each path p = eq where q ∈ F1 ∪ F2 and |q| ≥ 1, add a
new vertex wp and a new edge f p such that s(f p) = wp

and r(f p) = wq. Then let

P0
(H,S) = H ∪ S ∪ {wp | p ∈ F1(H , S) ∪ F2(H , S)} and

P1
(H,S) = {e ∈ E 1 | s(e) ∈ H} ∪ {e ∈ E 1 | s(e) ∈ S , r(e) ∈ H}∪

{f p | p ∈ F1(H , S) ∪ F2(H , S)}
We get a graded iso by

wp ! pp∗, p ∈ F1, wp ! pr(p)Hp∗, p ∈ F2,

f ep ! epp∗, p ∈ F1, f ep ! epr(p)Hp∗, p ∈ F2,



Example

Let E be •ve 77
g // •w and H = {w}. Then

F1(H) = {g , eg , eeg , eeeg , . . .}

and the porcupine is

// •w e2g f e
2g
// •w eg f eg // •wg f g // •w

We unroll the loop and make it into a single spine.

The graded iso is

eeeg ! f e
3g f e

2g f eg f g .



Another example

•
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g

YY
h // • and H = {w}. Then

F1(H) = {h, eh, gh, eeh, egh, geh, ggh, eeeh, . . .}
and the hedgehog graph is the same as in the previous
example. The, porcupine, on the other hand, is
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Porcupine-quotient (2023)

Given (H , S) ≤ (G ,T ) (this means H ⊆ G and S ⊆ G ∪ T )

we want to do the quotient
construction with (H , S) but
relative to the porcupine

graph of (G ,T ).

and we want to get

LK ((G ,T )/(H , S)) ∼=gr I (G ,T )/I (H , S).



The definition of (G ,T )/(H , S)

BG
H = {v ∈ E 0−H inf. emitter s.t. 0 < |s−1(v)∩r−1(G−H)| <∞}.

F1(G−H ,T−S) = {e1e2 . . . en is a path of E | r(en) ∈ G−H ,
s(en) /∈ (G − H) ∪ (T − S)}

F2(G −H ,T −S) = {p is a path of E | r(p) ∈ T −S , |p| > 0}
The set of vertices is

(G−H)∪(T−S)∪{wp | p ∈ F1(G−H ,T−S)∪F2(G−H ,T−S)}∪
{v ′ | v ∈ ((G ∪ T )− S) ∩ BG

H }.
The set of edges is

{e ∈ E 1 | r(e) ∈ G−H and either s(e) ∈ G−H or s(e) ∈ T−S}∪
{f p | p ∈ F1(G − H ,T − S) ∪ F2(G − H ,T − S)}∪

{e ′ | r(e) ∈ ((G ∪ T )− S) ∩ BG
H }.



Example 1

Let E be •u0 •v0 •w0

•u1

e //

OO

•v1

g //

OO

•w1

OO
and let H = {w0,w1} and

G = H ∪ {v0, v1}. Then, G/H is •v0

• f e // •v1

OO
.

The porcupine graph of H is •w0

• f eg // • f g // •w1

OO
and the

quotient graph E/G is •u0

•u1

OO
. The chain ∅ ≤ H ≤ G ≤ E 0 has

cofinal porcupine-quotients.



Example 2

Let E be •ve 66 44//
** ""•w If H = {w}, then BH = {v} and

we have
(∅, ∅) ≤ (H , ∅) ≤ (H , {v}) ≤ (E 0, ∅)

(H , {v})/(H , ∅) is • f eee // • f ee // • f e // •v . The

porcupine graph of (H , ∅) is • f eeg1 // • f eg1 // •
f g1

  
• f eeg2 // • f eg2 // • f g2 // •w

• f eeg3 // • f eg3 // •
f g3

>>

•

.

The quotient E/(H , {v}) is •ve 66 .



Everything agrees

If (H , S) = (∅, ∅),

If G = E 0 (so T = ∅),



The best part

For graph monoids and pre-ordered monoid maps:

M(G ,T )/(H,S)
∼= J(G ,T )/J(H , S)

For talented monoids and pre-ordered Γ-monoid maps:

MΓ
(G ,T )/(H,S)

∼= JΓ(G ,T )/JΓ(H , S).

So, the requirements that a composition series of any of
these exists are equivalent:

I admissible pairs of E ,

I graded ideals of LK (E ),

I order-ideals of ME ,

I Γ-order-ideals of MΓ
E .



Graded simple LPAs

LK (E ) is graded simple iff
no nontrivial and proper admissible pairs

i.e. composition series for E (equiv. LK (E )) have length 1.

Three basic examples ! three primary colors.

• // • // • • // • •
��

• eeqq
��
QQ



Three types of “terminal” vertices

1. A sink connects to no other vertex in the graph except,
trivially, to itself.

2. The vertices on a cycle without exits do not connect to
any vertices outside of the cycle.

3. An extreme cycle is a cycle such that the range of every
exit from the cycle connects back to a vertex in the cycle.
The vertices in such a cycle c connect only to the vertices
on cycles in the same “cluster” as c .



The fourth type

The algebra of

• >>
��
• >>

��
• >>

��
•

is graded simple but E has no sinks, no-exit nor extreme c-s.

T (V ) = tree of V , vertices to which v ∈ V emits paths,
R(V ) = root of V , vertices from which v ∈ V receives paths.

An infinite path α of E is terminal if

I no element of T (α0) is an
infinite emitter

I or on a cycle and

I for every infinite path β with
s(β) ∈ α0, T (β0) ⊆ R(β0).

Everything that originates in α comes back to α.



Examples

Each infinite path is terminal:

• // • // • // • • >>
��
• >>

��
• >>

��
•

None of the infinite paths is terminal:

•
�� // •

�� // •
�� // •

��

• 66//
(( ��• 66//

(( ��• 66//
(( ��•
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Four color characterization of graded simplicity

LK (E ) is graded simple (E is cofinal) iff exactly one of the
following holds.

1. E 0 = {v} for v a sink. If so, E is row-finite and acyclic.

2. E 0 = c0 for a cycle c without exits. If so, E is row-finite
and c is the only cycle.

3. E 0 = c0 for an extreme cycle c . If so, every cycle is
extreme and every inf. emitter is on a cycle.

4. E 0 = α0 for a terminal path α. If so, E is row-finite and
acyclic.

Corollaries. LK (E ) is simple iff 1, 3, or 4 hold.

LK (E ) is (graded) purely infinite simple iff 3 holds.



Comparison with Trichotomy Principle

Trichotomy Principle. LK (E ) is graded simple iff exactly
one of the following holds.

1. LK (E ) is locally matricial.

2. LK (E ) ∼= Mκ(K [x , x−1]) for a cardinal κ.

3. LK (E ) is purely-infinite simple.

The four-color characterization does not contradicts this. It

I refines 1 and

I gives a graph, not algebra, characterization.



Necessary cond. for having a composition series

Let
Ter(E ) = terminal vertices =

sinks ∪ no-exits ∪ extremes ∪ terminal paths.

If E 0 is finite, I (Ter(E )) has been known as Ilce .

If a graph E has a composition series, the following hold.

(a) Ter(E ) is nonempty.

(b) The set of terminal vertices of E contains finitely many
clusters.

(c) The set of breaking vertices of Ter(E ) is finite.



3 types of graphs not having a composition series

Ter(E ) is empty:

•
�� // •

�� // •
�� // •

��

• 66//
(( ��• 66//

(( ��• 66//
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Infinitely many clusters: • • •
Infinitely many breaking vertices of Ter(E ) :

•

• //

∞
OO

• //
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Characterization of having a composition series

One more type of obstruction

•
�� // •

�� // •
��

Define the composition quotients Fn of E . Let F0 = E .
If Ter(Fn) ( F 0

n , let

Fn+1 = Fn/(Ter(Fn),BTer(Fn)).

If Ter(Fn) = F 0
n , let Fn+1 = Fn+2 = . . . = ∅.

The graph E has a composition series iff

1. Conditions (a), (b), and (c) hold for Fn for each n for
which Fn 6= ∅.

2. There is n ≥ 0 such that Fn+1 = ∅ and Fn 6= ∅.



The proof is constructive. A corollary.

If C1, . . . ,Cn are clusters in Ter(E ), start by

(∅, ∅) ≤ (C1, ∅) ≤ (C1 ∪ C2, ∅) ≤ . . . (Ter(E ), ∅).

If v1, . . . , vm are breaking vertices of Ter(E ), continue with

(Ter(E ), ∅) ≤ (Ter(E ), {v1}) ≤ (Ter(E ), {v1, v2}) ≤ . . .

(Ter(E ),BTer(E)).

“Extend” a series for F1 by (Ter(E ),BTer(E)) and append it to
this.

Corollary.

Every unital LK (E ) has a graded composition series.

Surprising? Yes – LPAs appear to be “wilder” than this.
No – there are fin many vertices and we are cutting nonzero
many in each step.



We have 4.

GCC holds for cofinal graphs with sinks and no-exit
cycles.

Moreover, TFAE for a cofinal graph E with a sink or a no-exit
cycle and any graph F .

1. The talented monoid are “pointed” isomorphic.

2. F is cofinal with the same type of the terminal cluster is
the same (m = 0 if sink m > 0 if cycle of length m) and
the number and the lengths of paths ending in a terminal
vertex are the same modulo m.

Say E ≈ F in this case.

3. The algebras are graded isomorphic.



Graph condition for GCC for disjoint cycles

If E has a finite composition series and disjoint cycles, and F
is any graph.

1. The talented monoid are “pointed” isomorphic.

2. E ≈ F

3. The algebras are graded isomorphic.

If n = 2, ∅ ≤ H ≤ E 0 and ∅ ≤ G ≤ F 0, then E ≈ F if

I The porcupine parts match PH ≈ PG

I The quotient parts match E/H ≈ F/G , and

I The numbers and lengths of paths from the terminal
cluster of E/H to the terminal cluster of PH match the
corresponding numbers and lengths for F/G and PG .



Canonical form and deflated graphs

Let E be
•99 // •

Then each of the graphs below is an out-splits of E .

•99 // • // • •99 // • // • // • . . .

So, before you count the paths for the last requirement, you
have to ensure your graph is the “smallest” in the same sense
as E is the smaller than the graphs above.

A graph is deflated if it no out-amalgamations making it
“smaller” are possible.



Canonical form and neat graphs

For an infinite emitter v emitting paths to a terminal cluster,
you want to count only the paths such that there is infinitely
many of those of the same length.

•

•

??

•

VVOOHH@@

oo

•

OO

•

•

77

•oo •

VVOOHH@@

•

OO__

•

•

77

•oo •

VVOOHH@@

•

OO

•

OO

The last graph is the neat form of the first.



Canonical form and combed-out graphs

You also want to comb out all the loose “hair” sticking out.

•

•

VVOOHH@@

•

__

•

gg •

•

VVOOHH@@

The second graph is the combed-out form of the first.

When you have your graph in a canonical form (deflated,
neat, and combed-out), then you can start counting the paths.



Example with four deflated graphs

Let E1,E2,E3, and E4 be the four graphs below.

•v1

!!��

•w1

��
•v0

//

JJ

•w0

JJ
•v1

��

•w1

��
•v0

==

//

JJ

•w0

JJ
•v1

//

��

•w1

��
•v0

//

JJ

•w0

JJ
•v1

��

•w1

��
•v0

++
33

JJ

•w0

JJ

For E1,

(
(1) (0)
(1) (0)

)
. For E2,

(
(1) (1)
(0) (0)

)
.

For E3,

(
(1) (0)
(0) (1)

)
. For E4,

(
(2) (0)
(0) (0)

)
.

Row and column permutations leave all these different.



You also have to count the in-between vertices

• 66//
(( ��• ee • 66//

(( ��• ee

These two show that you do not want to consider the lengths
modulo the length of the terminal cycle.

• 66//
(( ��• // • // • ee

This graph and the second above show that the number of
in-between vertices matters.



A hope for settling GCC for all graphs

I Show the GCC for cofinal graphs with extreme cycles.

The methods of the “step 3” would work to show that
GCC holds for all E with a composition series.

And more:

I Define ≈ so that TFAE

1. The talented monoid are pointed isomorphic.
2. E ≈ F
3. The algebras are graded isomorphic.


