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A very general question: given a short exact sequence

0—-/—-R—R/l =0

More specifically, given g and h, how to get 7

R——=R/l—=0
Y

l”
J S

S/J

0

0
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Where do these questions come from?

Let R, S be your favourite graph (or groupoid) algebras and
I, J their appropriate substructures. Let R, S, etc, denote
some exact functor (e.g. pointed K§').

Having
0 I R R/l 0
0 J S S/J 0

and getting isomorphisms g and h using some inductive
process, we would like to have an iso f as below.

0—>/—>R—>R/l—>0

T

0—>J—=5——~5/J—>0




1. Substructures and quotients can also be represented as

algebras of graphs (or groupoids).

quotient porcupine  porcupine-quotient

2. Finite sequences of such substructures lead us to
composition series O=h<h<s... < L=R

3. The requirement that /x,1//x is simple leads us to
consideration of exactly four types of algebras.




My algebra of choice today is...

Leavitt path algebra Lx(E) of a graph E over a field K.

It is naturally graded by Z so that a path of length n is in the
n-th component.

The “substructure” is a graded ideal.
Any such ideal / is generated by the set H U S where
H=1nE°,
By = {v € E°—H inf. emitter s.t. 0 < |s~}(v)Nr*(E°—H)| < oo},
for ve By, let vi=v— Z ee”,
e€s~1(v)Nr—1(EO—H)
S={veBy|vlel}and S"={v"|veS}

The vertices in By are breaking vertices.



Admissible pair «~ graded ideal

Such H is hereditary (v € H implies that the tree of v is in
H) and saturated (a regular v with r(s7*(v)) in H is itself in
H).
Conversely, if H is any hereditary and saturated set of
vertices and S C By, then the ideal generated by HU S" is
graded. The pair

(H,S)
is called an admissible pair and we write /(H, S) for the
graded ideal generated by H U S*¥.

We want /(H,S) and Lx(E)/I(H,S) to be
Leavitt path algebras.



This is an “old” construction (2006-2008).

(E/(H,S))=E°-~HU{V |veBy—S},
(think v e~ v — v and v/ e vH)
(E/(H,5))" = {e € E* | r(e) ¢ H}U
{¢' | e € E' and r(e) € By — S},
with s(e’) = s(e), r(e’) = r(e)'.
This ensures that CK2 holds in E/(H, S) for v € By — S.
X\

By = {v} and

E/(H,By)is C.v and  E/(H,0)is C.v_>.v’.
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Hedgehog graph

H,s(e,) ¢ HU S},

Fi(H,S) ={e1...e,is a path of E | r(e,) €
|p| >0},

S
Fa(H,S) ={pis apath of E | r(p) € S,
Fi(H,S) is a copy of Fj(H,S),i=1,2,

Then

E(H sy=HUSUF(H,S)U F(H,S), and
E(lHS)f{ee Ellsie) e Htu{e € E'|s(e) € S,r(e) € H}U
ll:l(H7 5) U FQ(H, 5) with

s(5) = p.1(p) = r(p) for p € Fy(H, S) UFa(H, 5).
Examples. Let E be eCoV—g>oW and H = {w}. Then

F1 ={e"gln=0,1,...} and the hedgehog is e ° o



Good
Lk(quotient graph) =, Lx(E)/I(H,S)

Lk (hedgehog) = I(H, S)
Bad

LK(hedgehog) %gr I(H7 S)
Indeed, if E is eC.v—gnw and H = {w},

the path eeeg (of length 4) of /(H) corresponds to an edge
eeeg so it has length 1 in the LPA of the hedgehog.




Porcupine graph P4 sy (2021)

Keep the definitions of F; and F,.

For each e € (F; U /) N EY, let w® be a new vertex and 7€ a
new edge such that s(¢) = w® and r(f¢) = r(e).

For each path p = eq where g € F; U F, and |g| > 1, add a
new vertex w” and a new edge f” such that s(f?) = w”
and r(fP) = w9. Then let

Plusy=HUSU{w? | p e F(H,S)U Fy(H,S)} and
P(l,_,vs) ={ec E'|s(e)c H} U{ec E'|s(e) € S,r(e) € H}U
{fP|pe€ F(H,S)UF(H,S)}
We get a graded iso by
wP e pp*,p € F1, wP e pr(p)’p*, p € F,
P« epp*,p € Fy, % o epr(p)p*, p € Fy,



Let E be eC.v—g>.W and H = {w}. Then

Fl(H) = {ga €g, €eeg, eceg,
and the porcupine is

)

° [ 34
The graded iso is

ceeg «~s FOEFTEFELE,




oF

e——>e and H={w}. Then
7

Fi(H) = {h, eh, gh, eeh, egh, geh, ggh, eeeh, ...}
and the hedgehog graph is the same as in the previous
example. The, porcupine, on the other hand, is

|
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P
Let £ be o —2-o¥
le; ...... ;

3 e and H = {v}75 = {W} Here

o——>0
Fi(H,S) = {e3, e2e5, e1e2e3} and Fr(H,S) = {e1}.
The hedgehog is

oS3
_ N ___
ot . oW o <2% e
]616263
The porcupine is 0 10263
wel fel

fe3 fe2e3
oV .we3

we2es fe1e2e3

e
.W 1€2€3
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Given (H,S) < (G, T) (thismeans HC Gand SC GUT)

and we want to get

Lk((G, T)/(H,5)) =g 1(G, T)/I(H,S).

=] 5 = = E DA



The definition of (G, T)/(H,S)

B = {v € E°>~H inf. emitter s.t. 0 < |s"}(v)Nr }(G—H)| < oc}.
Fi(G—H, T—S)={eiex...e,is a path of E | r(e,) € G—H,
s(en) € (G = H)U(T = 5)}
Fo(G—H, T—S)={pisapathof E|r(p)e T—S,|p| >0}
The set of vertices is
(G—H)U(T-S)UHA{wP | pe Fi(G—H, T-S)UF(G—H, T-S)}U
{Vve((GUT)-S)NnBS}.
The set of edges is
{e € E* | r(e) € G—H and either s(e) € G—H or s(e) € T—S}U
{fPlpe A(G—H, T—S)UF(G—-H,T-S)}U
{e'|r(e) e ((GUT)—S)NBS}.



Let £ be o, °,

o,, and let H = {wy, w;} and
L]
.Ul

_>.V1_>

.Wl
G=HU {Vo, V]_}. Then, G/H is

°, -

. |

o —>0

Vi
The porcupine graph of H is

e,, and the

feg & T
o—>0

—_— e
quotient graph £/G is e, . The chain ) < H < G < E° has

|

u
cofinal porcupine-quotients.
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PR

we have

(0.0) < (H.0) < (H.{v}) < (E°.0)

(HAVD/(H, D) is ot a "0 The
porcupine graph of (H, ) is - o———>~e——>o

feegr fes2 &
[ J [ ]

feesgs fees

.............. e——o0— 0

The quotient E/(H, {v}) is eCov .
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If (H,S) = (0,0),

Y-

porcupine-quotient is porcupine

If G=E°(so T =0),

%Y, -

porcupine-quotient s

quotient
= E = 9HAE



v o= v +1 ifve(G—-H)-B5U(GNYS),
v o veH +I ifve((GUT)-S)NBS

v o= Ve +1 ifve(T-S)-Bg,

wP  —  pp* +I ifpe R(G—-—H,T-Y5),

wP —  pr(p)¢p* 4+l ifpeFR(G—-H,T-S5),

Vi v—veH o 4 ifve(G-S)NBE,

Vi ve—ve 4 ifve(T-S)NBS.

In the last two lines, the image is v/’ + /.
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For graph monoids and pre-ordered monoid maps:

For talented monoids and pre-ordered [-monoid maps:

So, the requirements that a composition series of any of
these exists are equivalent:

» admissible pairs of E,
> graded ideals of Lk (E),
» order-ideals of Mg,

» [-order-ideals of ML.
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Graded simple LPAs

Lk (E) is graded simple iff
no nontrivial and proper admissible pairs

i.e. composition series for E (equiv. L)K(E)) have length 1.

Three basic examples «~ three primary colors.




Three types of “terminal” vertices

1. A sink connects to no other vertex in the graph except,
trivially, to itself.

2. The vertices on a cycle without exits do not connect to
any vertices outside of the cycle.

3. An extreme cycle is a cycle such that the range of every

exit from the cycle connects back to a vertex in the cycle.
The vertices in such a cycle ¢ connect only to the vertices
on cycles in the same “cluster” as c.




TN /@
OVOV\—/.K/.

Vo is on an extreme cycle and {v} is a cluster.
Composition factors:

0<{w}<{n}<{w}=E
Four porcupine-quotients:

oy
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The fourth type

The algebra of

7N TN TN
) ° )
N T N T

is graded simple but E has no sinks, no-exit nor extreme c-s.

T(V) = tree of V, vertices to which v € V emits paths,
R(V) = root of V/, vertices from which v € V receives paths.

An infinite path « of E is terminal if

» no element of T(a®) is an
infinite emitter

» or on a cycle and
» for every infinite path 3 with
s(B) € a®, T(8%) € R(8°).

Everything that originates in & comes back to «.




Each infinite path is terminal:

o000 L
N
e, 1



Formal definition of a “cluster”

A vertex v € EY is terminal if it is a sink, on a cycle without
exits, on an extreme cycle, or on a terminal path.

The cluster of a terminal vertex v is
{we E°| R(p®) = R(q°) for all p,g € E=>® v € p°, w € ¢°}
E=> = infinite paths or finite paths with range not regular.

Exactly four examples:

1. The cluster of a sink v is {v} = T(v).

2. The cluster of v € c° for ¢ no-exit is ¢® = T(c?).
3. The cluster of v € c° for ¢ extreme is T(c?).
4

. The cluster of v € a° for o terminal is | J T(°) where 3
is terminal with R(a®) = R(5°).




Four color characterization of graded simplicity

Lk(E) is graded simple (E is cofinal) iff exactly one of the
following holds.
1. E° = m for v a sink. If so, E is row-finite and acyclic.
2. E9 = ¢ for a cycle ¢ without exits. If so, E is row-finite
and c is the only cycle.

3. E% = 0 for an extreme cycle c. If so, every cycle is
extreme and every inf. emitter is on a cycle.

4. E® = @ for a terminal path a. If so, E is row-finite and

acyclic.

Corollaries. Lx(E) is simple iff 1, 3, or 4 hold.
Lk(E) is (graded) purely infinite simple iff 3 holds.



Comparison with Trichotomy Principle

Trichotomy Principle. Lx(E) is graded simple iff exactly
one of the following holds.

1. Lk(E) is locally matricial.
2. Lx(E) = M, (K[x,x]) for a cardinal .
3. Lk(E) is purely-infinite simple.

The four-color characterization does not contradicts this. It
» refines 1 and

» gives a graph, not algebra, characterization.



Let

Ter(E) = terminal vertices =

sinks U no-exits U extremes U terminal paths.

If E® is finite, /(Ter(E)) has been known as /.
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3 types of graphs not having a composition series

Ter(E) is empty:

O000
N
e, ]

Infinitely many clusters: . ° CR——

Infinitely many breaking vertices of Ter(E) :




One more type of obstruction

Define the composition quotients F, of E. Let Fp = E.
If Ter(F,) C FP, let

F,H_]_ = F,,/(Ter(F,,), BTer(Fn))-
If Ter(F,) = FO, let Fpyy = Fpin = ... = 0.

DA



then Ter(E) =

{VO} SO F]_ |S

Ter(Fl) = m so F2 i

/\/\(7

V\_/V\/

/\ O
.V23._>..

Q>



The proof is constructive. A corollary.

If Ci,...,C, are clusters in Ter(E), start by
0,0) < (G,0) < (GUG,0) < ...(Ter(E), D).
If vi,..., vy are breaking vertices of Ter(E), continue with
(Ter(E), D) < (Ter(E),{wi}) < (Ter(E),{wv1,va}) < ...

(Ter(E), BTer(E))~
“Extend” a series for F1 by (Ter(E), Brer(g)) and append it to
this.

Corollary.
Every unital Lx(E) has a graded composition series.

Surprising?  Yes — LPAs appear to be “wilder” than this.
No — there are fin many vertices and we are cutting nonzero
many in each step.



Talented monoid

For v € E° ([v]) is minimal iff v is terminal.

If v is a terminal vertex,

ME E

[v] periodic e~ v in no-exits
[v] aperiodic e~ v in extremes
A ad

[v] incomparable v in sink or in terminal paths

Also, characterization when all factors of ML are of only one
or only two types. E.g.

> M(FGI)/(%S) is periodic or incomparable iff the cycle of E
are disjoint.

> M{Gj)/(,_hs) is incomparable iff E is acyclic.



» What other useful corollaries we get for LPAs with finite
composition series?

» How to realize the idea from the beginning of the talk?

» Does the porcupine-quotient construction has a groupoid

generalization?

o

Full papers on porcupine and porcupine-quotients are on arXiv
and at http://liavas.net
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