Porcupine-quotient and the fourth primary color

Lia Vaš Saint Joseph's University, Philadelphia, USA

hedgehog

porcupine

porcupine-quotient

three primary colors

the fourth one

Substructures and quotients

A very general question: given a short exact sequence

$$0 \rightarrow I \rightarrow R \rightarrow R/I \rightarrow 0$$

how to patch the information from I and R/I to recover the information on R?

More specifically, given g and h, how to get f?

$$0 \longrightarrow I \longrightarrow R \longrightarrow R/I \longrightarrow 0$$

$$\downarrow^{g} \qquad \downarrow^{f} \qquad \downarrow^{h}$$

$$0 \longrightarrow J \longrightarrow S \longrightarrow S/J \longrightarrow 0$$

Where do these questions come from?

Let R, S be your favourite graph (or groupoid) algebras and I, J their appropriate substructures. Let $\overline{R}, \overline{S}$, etc, denote some exact functor (e.g. pointed K_0^{gr}).

Having

and getting isomorphisms g and h using some inductive process, we would like to have an iso f as below.

$$0 \longrightarrow I \longrightarrow R \longrightarrow R/I \longrightarrow 0$$

$$\downarrow^{g} \qquad \downarrow^{f} \qquad \downarrow^{h}$$

$$0 \longrightarrow J \longrightarrow S \longrightarrow S/J \longrightarrow 0$$

This brings us to the following ...

1. Substructures and quotients can also be represented as algebras of graphs (or groupoids).

- 2. Finite sequences of such substructures lead us to **composition series** $0 = I_0 \le I_1 \le ... \le I_n = R$.
- 3. The requirement that I_{k+1}/I_k is **simple** leads us to consideration of exactly four types of algebras.

My algebra of choice today is...

Leavitt path algebra $L_K(E)$ of a graph E over a field K.

It is naturally **graded** by \mathbb{Z} so that a path of length n is in the n-th component.

The "substructure" is a **graded ideal.**

Any such ideal I is generated by the set $H \cup S^H$ where $H = I \cap E^0$,

$$B_H = \{ v \in E^0 - H \text{ inf. emitter s.t. } 0 < |s^{-1}(v) \cap r^{-1}(E^0 - H)| < \infty \},$$
 for $v \in B_H$, let $v^H = v - \sum_{e \in s^{-1}(v) \cap r^{-1}(E^0 - H)} ee^*$,

$$S = \{ v \in B_H \mid v^H \in I \} \text{ and } S^H = \{ v^H \mid v \in S \}.$$

The vertices in B_H are **breaking vertices**.

Admissible pair was graded ideal

Such H is **hereditary** ($v \in H$ implies that the tree of v is in H) and **saturated** (a regular v with $r(s^{-1}(v))$ in H is itself in H).

Conversely, if H is any hereditary and saturated set of vertices and $S \subseteq B_H$, then the ideal generated by $H \cup S^H$ is **graded**. The pair

is called an **admissible pair** and we write I(H, S) for the graded ideal generated by $H \cup S^H$.

We want I(H, S) and $L_K(E)/I(H, S)$ to be **Leavitt path algebras.**

Quotient graph

This is an "old" construction (2006-2008).

$$(E/(H,S))^{0} = E^{0} - H \cup \{v' \mid v \in B_{H} - S\},$$

$$(\text{think } v \iff v - v^{H} \text{ and } v' \iff v^{H})$$

$$(E/(H,S))^{1} = \{e \in E^{1} \mid r(e) \notin H\} \cup$$

$$\{e' \mid e \in E^{1} \text{ and } r(e) \in B_{H} - S\},$$

with
$$s(e') = s(e), r(e') = r(e)'.$$

This ensures that CK2 holds in E/(H,S) for $v \in B_H - S$.

Examples. Let
$$E$$
 be $\bigcirc \bullet^v \Longrightarrow \bullet^w$ and $H = \{w\}$. Then

$$B_H = \{v\}$$
 and

$$E/(H, B_H)$$
 is $\bigcirc \bullet^{\nu}$ and $E/(H, \emptyset)$ is $\bigcirc \bullet^{\nu} \longrightarrow \bullet^{\nu'}$.

Hedgehog graph

$$F_1(H,S) = \{e_1 \dots e_n \text{ is a path of } E \mid r(e_n) \in H, s(e_n) \notin H \cup S\},$$

 $F_2(H,S) = \{p \text{ is a path of } E \mid r(p) \in S, |p| > 0\},$
 $\overline{F_i}(H,S) \text{ is a copy of } F_i(H,S), i = 1,2,$

Then

$$E_{(H,S)}^{0} = H \cup S \cup F_{1}(H,S) \cup F_{2}(H,S), \text{ and}$$

$$E_{(H,S)}^{1} = \{e \in E^{1} \mid s(e) \in H\} \cup \{e \in E^{1} \mid s(e) \in S, r(e) \in H\} \cup \overline{F_{1}}(H,S) \cup \overline{F_{2}}(H,S) \text{ with}$$

$$s(\overline{p}) = p, r(\overline{p}) = r(p) \text{ for } \overline{p} \in \overline{F_{1}}(H,S) \cup \overline{F_{2}}(H,S).$$

Examples. Let *E* be $e \bigcirc \bullet^{v} \xrightarrow{g} \bullet^{w}$ and $H = \{w\}$. Then

$$F_1=\{e^ng|n=0,1,\ldots\}$$
 and the hedgehog is $ullet$

Some good and some bad news

Good

$$L_K$$
(quotient graph) $\cong_{gr} L_K(E)/I(H,S)$

$$L_K(\mathsf{hedgehog}) \cong I(H,S)$$

Bad

$$L_K(\text{hedgehog}) \ncong_{gr} I(H, S)$$

Indeed, if
$$E$$
 is $e \bigcirc \bullet^{v} \stackrel{g}{\longrightarrow} \bullet^{w}$ and $H = \{w\},$

the path eeeg (of length 4) of I(H) corresponds to an edge \overline{eeeg} so it has length 1 in the LPA of the hedgehog.

How to fix this?

Make the "spines" longer and get...

Porcupine graph $P_{(H,S)}$ (2021)

Keep the definitions of F_1 and F_2 .

For each $e \in (F_1 \cup F_2) \cap E^1$, let w^e be a **new vertex** and f^e a **new edge** such that $s(f^e) = w^e$ and $r(f^e) = r(e)$.

For each path p=eq where $q\in F_1\cup F_2$ and $|q|\geq 1$, add a **new vertex** w^p and a **new edge** f^p such that $s(f^p)=w^p$ and $r(f^p)=w^q$. Then let

$$P_{(H,S)}^{0} = H \cup S \cup \{w^{p} \mid p \in F_{1}(H,S) \cup F_{2}(H,S)\} \text{ and}$$

$$P_{(H,S)}^{1} = \{e \in E^{1} \mid s(e) \in H\} \cup \{e \in E^{1} \mid s(e) \in S, r(e) \in H\} \cup \{f^{p} \mid p \in F_{1}(H,S) \cup F_{2}(H,S)\}$$

We get a graded iso by

$$w^p \longleftrightarrow pp^*, p \in F_1, \quad w^p \longleftrightarrow pr(p)^H p^*, p \in F_2,$$

$$f^{ep} \longleftrightarrow epp^*, p \in F_1, \quad f^{ep} \longleftrightarrow epr(p)^H p^*, p \in F_2,$$

Example

and the porcupine is

$$\longrightarrow \bullet^{W^{e^2g}} \xrightarrow{f^{e^2g}} \bullet^{W^{eg}} \xrightarrow{f^{eg}} \bullet^{W^g} \xrightarrow{f^g} \bullet^W$$

We unroll the loop and make it into a single spine.

The graded iso is

eeeg
$$\iff f^{e^3g}f^{e^2g}f^{eg}f^g$$
.

Another example

 $F_1(H) = \{h, eh, gh, eeh, egh, geh, ggh, eeeh, \ldots\}$

and the **hedgehog** graph is the **same** as in the previous example. The, **porcupine**, on the other hand, is

Yet another example

Let
$$E$$
 be $\bullet \xrightarrow{e_1} \bullet^w \xrightarrow{e_2} \bullet^v$ and $H = \{v\}, S = \{w\}$. Here

 $F_1(H,S) = \{e_3, e_2e_3, e_1e_2e_3\}$ and $F_2(H,S) = \{e_1\}$. The hedgehog is

The porcupine is

$$\bullet^{W^{e_1}} \xrightarrow{f^{e_1}} \bullet^{W} \xrightarrow{\bullet^{W^{e_3}}} \bullet^{W} \xrightarrow{f^{e_2e_3}} \bullet^{W^{e_2e_3}} \xrightarrow{f^{e_1e_2e_3}} \bullet^{W^{e_1e_2e_3}}$$

Porcupine-quotient (2023)

Given
$$(H, S) \leq (G, T)$$
 (this means $H \subseteq G$ and $S \subseteq G \cup T$)

we want to do the **quotient** construction with (H, S) but **relative** to the **porcupine** graph of (G, T).

and we want to get

$$L_K((G,T)/(H,S)) \cong_{gr} I(G,T)/I(H,S).$$

The definition of (G, T)/(H, S)

$$B_{H}^{G} = \{v \in E^{0} - H \text{ inf. emitter s.t. } 0 < |s^{-1}(v) \cap r^{-1}(G - H)| < \infty\}.$$

$$F_{1}(G - H, T - S) = \{e_{1}e_{2} \dots e_{n} \text{ is a path of } E \mid r(e_{n}) \in G - H,$$

$$s(e_{n}) \notin (G - H) \cup (T - S)\}$$

$$F_{2}(G - H, T - S) = \{p \text{ is a path of } E \mid r(p) \in T - S, |p| > 0\}$$
The set of **vertices** is

$$(G-H)\cup (T-S)\cup \{w^p\mid p\in F_1(G-H,T-S)\cup F_2(G-H,T-S)\}\cup F_2(G-H,T-S)\}\cup F_2(G-H,T-S)$$

$$\{v'\mid v\in ((G\cup T)-S)\cap B_H^G\}.$$

The set of edges is

$$\{e \in E^1 \mid \mathsf{r}(e) \in G - H \text{ and either } \mathsf{s}(e) \in G - H \text{ or } \mathsf{s}(e) \in T - S\} \cup \\ \{f^p \mid p \in F_1(G - H, T - S) \cup F_2(G - H, T - S)\} \cup \\ \{e' \mid \mathsf{r}(e) \in ((G \cup T) - S) \cap B_H^G\}.$$

Example 1

Let
$$E$$
 be \bullet_{u_0} \bullet_{v_0} \bullet_{w_0} and let $H=\{w_0,w_1\}$ and \bullet_{u_1} $\stackrel{e}{\longrightarrow} \bullet_{v_1}$ $\stackrel{g}{\longrightarrow} \bullet_{w_1}$ $G=H\cup\{v_0,v_1\}.$ Then, G/H is \bullet_{v_0} . The porcupine graph of H is \bullet_{w_0} and the quotient graph E/G is \bullet_{u_0} . The chain $\emptyset \leq H \leq G \leq E^0$ has

cofinal porcupine-quotients.

Example 2

The quotient $E/(H, \{v\})$ is $e \bigcirc \bullet_v$.

Everything agrees

If
$$(H, S) = (\emptyset, \emptyset)$$
,

If
$$G = E^0$$
 (so $T = \emptyset$),

The graded iso

$$L_K((G,T)/(H,S)) \cong_{\mathsf{gr}} I(G,T)/I(H,S)$$

In the last two lines, the image is $v^H + I$.

The best part

For graph monoids and pre-ordered monoid maps:

$$M_{(G,T)/(H,S)} \cong J(G,T)/J(H,S)$$

For talented monoids and pre-ordered Γ-monoid maps:

$$M_{(G,T)/(H,S)}^{\Gamma}\cong J^{\Gamma}(G,T)/J^{\Gamma}(H,S).$$

So, the requirements that a **composition series** of any of these exists are equivalent:

- \triangleright admissible pairs of E,
- ▶ graded ideals of $L_K(E)$,
- \triangleright order-ideals of M_E ,
- ightharpoonup Γ -order-ideals of M_F^{Γ} .

Graded simple LPAs

 $L_K(E)$ is graded simple iff no nontrivial and proper admissible pairs

i.e. composition series for E (equiv. L)K(E)) have **length 1**.

Three basic examples \to three primary colors.

Three types of "terminal" vertices

- 1. A <u>sink</u> connects to no other vertex in the graph except, trivially, to itself.
- 2. The vertices on a <u>cycle without exits</u> do not connect to any vertices outside of the cycle.
- 3. An **extreme cycle** is a cycle such that the range of every exit from the cycle connects back to a vertex in the cycle. The vertices in such a cycle *c* connect only to the vertices on cycles in the same "cluster" as *c*.

Example

For

 v_0 is on an extreme cycle and $\overline{\{v_0\}}$ is a cluster.

Composition factors:

$$\emptyset \leq \overline{\{v_0\}} \leq \overline{\{v_1\}} \leq \overline{\{v_2\}} = E^0.$$

Four porcupine-quotients:

The fourth type

The algebra of

is graded simple but E has no sinks, no-exit nor extreme c-s.

T(V) =tree of V, vertices to which $v \in V$ emits paths,

 $R(V) = \mathbf{root}$ of V, vertices from which $v \in V$ receives paths.

An infinite path α of E is **terminal** if

- ▶ no element of $T(\alpha^0)$ is an infinite emitter
- or on a cycle and
- for every infinite path β with $s(\beta) \in \alpha^0$, $T(\beta^0) \subseteq R(\beta^0)$.

Everything that originates in α comes back to α .

Examples

Each infinite path is terminal:

None of the infinite paths is terminal:

Formal definition of a "cluster"

A vertex $v \in E^0$ is **terminal** if it is a sink, on a cycle without exits, on an extreme cycle, or on a terminal path.

The **cluster** of a terminal vertex v is $\{w \in E^0 \mid R(p^0) = R(q^0) \text{ for all } p, q \in E^{\leq \infty} \ v \in p^0, w \in q^0\}$ $E^{\leq \infty} = \text{infinite paths or finite paths with range not regular.}$

Exactly four examples:

- 1. The cluster of a sink v is $\{v\} = T(v)$.
- 2. The cluster of $v \in c^0$ for c no-exit is $c^0 = T(c^0)$.
- 3. The cluster of $v \in c^0$ for c extreme is $T(c^0)$.
- 4. The cluster of $v \in \alpha^0$ for α terminal is $\bigcup T(\beta^0)$ where β is terminal with $R(\alpha^0) = R(\beta^0)$.

Four color characterization of graded simplicity

 $L_K(E)$ is **graded simple** (E is cofinal) iff exactly one of the following holds.

- 1. $E^0 = \overline{\{v\}}$ for v a sink. If so, E is row-finite and acyclic.
- 2. $E^0 = \overline{c^0}$ for a cycle c without exits. If so, E is row-finite and c is the only cycle.
- 3. $E^0 = \overline{c^0}$ for an extreme cycle c. If so, every cycle is extreme and every inf. emitter is on a cycle.
- 4. $E^0 = \overline{\alpha^0}$ for a terminal path α . If so, E is row-finite and acyclic.

Corollaries. $L_K(E)$ is **simple** iff 1, 3, or 4 hold.

 $L_K(E)$ is **(graded) purely infinite simple** iff 3 holds.

Comparison with Trichotomy Principle

Trichotomy Principle. $L_K(E)$ is **graded simple** iff exactly one of the following holds.

- 1. $L_K(E)$ is locally matricial.
- 2. $L_K(E) \cong \mathbb{M}_{\kappa}(K[x,x^{-1}])$ for a cardinal κ .
- 3. $L_K(E)$ is purely-infinite simple.

The four-color characterization does not contradicts this. It

- refines 1 and
- gives a graph, not algebra, characterization.

Necessary cond. for having a composition series

Let

$$Ter(E) = \overline{terminal \ vertices} =$$

 $\overline{\text{sinks}} \cup \overline{\text{no-exits}} \cup \overline{\text{extremes}} \cup \overline{\text{terminal paths}}.$

If E^0 is finite, I(Ter(E)) has been known as I_{lce} .

If a graph E has a composition series, the following hold.

- (a) Ter(E) is **nonempty**.
- (b) The set of terminal vertices of *E* contains **finitely many clusters.**
- (c) The set of breaking vertices of Ter(E) is **finite**.

3 types of graphs not having a composition series

Ter(E) is empty:

Infinitely many breaking vertices of Ter(E):

Characterization of having a composition series

One more type of obstruction

Define the **composition quotients** F_n of E. Let $F_0 = E$. If $Ter(F_n) \subsetneq F_n^0$, let

$$F_{n+1} = F_n/(\operatorname{Ter}(F_n), B_{\operatorname{Ter}(F_n)}).$$

If
$$Ter(F_n) = F_n^0$$
, let $F_{n+1} = F_{n+2} = ... = \emptyset$.

The graph E has a composition series iff

- 1. Conditions (a), (b), and (c) hold for F_n for each n for which $F_n \neq \emptyset$.
- 2. There is $n \geq 0$ such that $F_{n+1} = \emptyset$ and $F_n \neq \emptyset$.

Example

If E is

$$\bullet_{\nu_2} \Longrightarrow \bullet \longrightarrow \bullet_{\nu_1} \longrightarrow \bullet_{\nu_0} \longrightarrow \bullet$$

then
$$\operatorname{Ter}(E)=\overline{\{v_0\}}$$
 so F_1 is \bullet

$$\operatorname{\mathsf{Ter}}(F_1) = \overline{\{v_1\}} \text{ so } F_2 \text{ is }$$

 \bullet_{v_2}

This gives us the composition series

$$\emptyset \leq \overline{\{v_0\}} \leq \overline{\{v_1\}} \leq \overline{\{v_2\}} = E^0.$$

The proof is constructive. A corollary.

If
$$C_1, \ldots, C_n$$
 are clusters in $\operatorname{Ter}(E)$, start by
$$(\emptyset, \emptyset) \leq (\overline{C_1}, \emptyset) \leq (\overline{C_1} \cup \overline{C_2}, \emptyset) \leq \ldots (\operatorname{Ter}(E), \emptyset).$$

If v_1, \ldots, v_m are breaking vertices of $\operatorname{Ter}(E)$, continue with $(\operatorname{Ter}(E), \emptyset) \leq (\operatorname{Ter}(E), \{v_1\}) \leq (\operatorname{Ter}(E), \{v_1, v_2\}) \leq \ldots$ $(\operatorname{Ter}(E), B_{\operatorname{Ter}(E)}).$

"Extend" a series for F_1 by $(Ter(E), B_{Ter(E)})$ and append it to this.

Corollary.

Every **unital** $L_K(E)$ has a graded composition series.

Surprising? Yes – LPAs appear to be "wilder" than this.

No – there are fin many vertices and we are cutting nonzero many in each step.

Talented monoid

For $v \in E^0$, $\langle [v] \rangle$ is **minimal** iff v is **terminal**.

If v is a terminal vertex,

M_E^{Γ}		Е
[v] periodic[v] aperiodic[v] incomparable	~~~	<pre>v in no-exits v in extremes v in sink or in terminal paths</pre>

Also, characterization when all factors of M_E^{Γ} are of **only one** or **only two** types. E.g.

- ► $M_{(G,T)/(H,S)}^{\Gamma}$ is periodic or incomparable iff the cycle of E are disjoint.
- $ightharpoonup M_{(G,T)/(H,S)}^{\Gamma}$ is incomparable iff E is acyclic.

Questions

- ► What other useful corollaries we get for LPAs with finite composition series?
- ▶ How to realize the idea from the beginning of the talk?
- Does the porcupine-quotient construction has a groupoid generalization?

Full papers on porcupine and porcupine-quotients are on arXiv and at http://liavas.net

