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Abstract. If E is a graph and K is a field, we consider an ideal I of the Leavitt path algebra
LK(E) of E over K. We describe the admissible pair corresponding to the smallest graded ideal
which contains I where the grading in question is the natural grading of LK(E) by Z. Using this
description, we show that the right and the left annihilators of I are equal (which can be somewhat
surprising given that I may not be self-adjoint). In particular, we establish that both annihilators
correspond to the same admissible pair and its description produces the characterization from the
title. Then, we turn to the property that the right (equivalently left) annihilator of any ideal is a
direct summand and recall that a unital ring with this property is said to be quasi-Baer. We exhibit
a condition on E which is equivalent to unital LK(E) having this property.

1. Introduction

If R is a ring (associative but not necessarily unital) and M is a left R-module, then annl(M) =
{r ∈ R | rm = 0 for all m ∈M} is a two-sided ideal of R called the left annihilator of M. Similarly,
if N is a right R-module, then the ideal annr(N) = {r ∈ R | nr = 0 for all n ∈ N} is called the
right annihilator of N. If B is both a left and a right R-module, ann(B) = {r ∈ R | rb = br =
0 for any b ∈ B} is the annihilator of B.

The ideals which are annihilators of other ideals have been called annihilator ideals. Annihilator
ideals of a Leavitt path algebra have recently been studied in [4], [5] and [8]. If E is a graph and
K is a field and if the Leavitt path algebra LK(E) is considered naturally graded by the group of
integers, then ann(I) is graded for any ideal I (not necessarily graded) of LK(E) by [5, Theorem
3.3]. By [8, Proposition 3.1], the same holds for annl(I) and annr(I). However, while these results
establish that annl(I), annr(I), and ann(I) are graded, the exact relations between these three
graded ideals have not yet been established.

In this paper, we establish such exact relations by describing the corresponding admissible pairs
of the three annihilators. Namely, any graded ideal of LK(E) is uniquely determined by a pair of
two sets of vertices of the graph E, known as an admissible pair. In Theorem 3.2, we show that
all three annihilators annl(I), annr(I), and ann(I) correspond to the same admissible pair. So, the
three annihilators are equal. On one hand, this may not be that surprising knowing that LK(E) is
an involutive algebra and, as such, has certain left-right symmetry. On the other hand, this may
be surprising given that an ideal of LK(E) is not necessarily self-adjoint.

To prove Theorem 3.2, we consider the smallest graded ideal Igr which contains an ideal I. In
Theorem 3.1 (which can be relevant in its own right), we describe Igr in terms of its admissible
pair. Then, we use [8, Proposition 3.5] which exhibits the admissible pair of the annihilator of a
graded ideal. Using this result, we prove Theorem 3.2 stating that if Igr = I(H,S), if H⊥ is the
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set of vertices which do not emit paths to H, and if BH⊥ is the set of breaking vertices of H⊥ (we
review this concept in section 2.3) then

annl(I) = annr(I) = ann(I) = ann(Igr) = I(H⊥, BH⊥).

In section 4, we turn to the ring-theoretic condition that the left (equivalently right) annihilator of
an ideal is a direct summand. If R is a unital ring, this condition is equivalent with the requirement
that, for any right ideal I, there is an idempotent ε ∈ R such that annr(I) = εR and a ring which
satisfies this property is said to be right quasi-Baer. In [3, Lemma 1], it is shown that this definition
is left-right symmetric and that an equivalent statement is obtained by requiring I to be a double-
sided ideal. Because of this, the left-right specification in front of “quasi-Baer” can be dropped. If
R has this property, then R is unital (the identity is an idempotent obtained for I = 0).

We generalize this concept to graded rings and establish the relation between quasi-Baer and
graded quasi-Baer properties in Proposition 4.3. Turning to Leavitt path algebras, we characterize
when LK(E) is (graded) quasi-Baer in terms of the conditions on E (Proposition 4.5). Considering
LK(E) as an involutive ring, we show that these conditions on E also characterize when LK(E) is
a (graded) quasi-Baer ∗-ring (Proposition 4.6).

2. Prerequisites and preliminaries

2.1. Graded rings. A ring R (not necessarily unital) is graded by a group Γ if R =
⊕

γ∈Γ Rγ for

additive subgroups Rγ and RγRδ ⊆ Rγδ for all γ, δ ∈ Γ. The elements
⋃
γ∈ΓRγ are homogeneous.

A left (right, double-sided) ideal I of R is graded if I =
⊕

γ∈Γ I ∩Rγ.

2.2. Graphs and Leavitt path algebras. If E is a directed graph, we let E0 denote the set of
vertices, E1 denote the set of edges, and s and r denote the source and the range maps of E. We
adopt the standard definitions of a sink, an infinite emitter, a regular vertex, a finite graph, a path
in a graph, and a cycle of E (see [1] for any of those). For V ⊆ E0, the root R(V ) of V is the set
of vertices v ∈ E0 such that s(p) = v and r(p) ∈ V for some path p.

We also adopt the standard definition of the Leavitt path algebra LK(E) of a graph E over a
field K ([1, Definition 1.2.3]). Recall that a ring R is locally unital if for every finite set F ⊆ R,
there is an idempotent ε ∈ R such that F ⊆ εRε. The algebra LK(E) is locally unital (with the
finite sums of vertices as the local units). The algebra LK(E) is unital if and only if E0 is finite
in which case the sum of all vertices is the identity. If we consider K to be trivially graded by
Z, LK(E) is naturally graded by Z so that the n-component LK(E)n is the K-linear span of the
elements pq∗ for paths p, q with |p| − |q| = n where |p| denotes the length of a path p.

2.3. Ideals and graded ideals of a Leavitt path algebra. A subset H of E0 is said to be
hereditary if r(p) ∈ H for any path p such that s(p) ∈ H. The set H is saturated if v ∈ H for any
regular vertex v such that r(s−1(v)) ⊆ H. If H is hereditary, let

BH = {v ∈ E0 −H | v is an infinite emitter and s−1(v) ∩ r−1(E0 −H) is nonempty and finite}
and, for v ∈ BH , let vH stand for v−

∑
ee∗ where the sum is taken over e ∈ s−1(v)∩ r−1(E0−H).

An admissible pair is a pair (H,S) where H ⊆ E0 is hereditary and saturated and S ⊆ BH . For an
admissible pair (H,S), if SH denotes the set {vH | v ∈ S} and I(H,S) denotes the ideal generated
by the elements H ∪ SH , then I(H,S) is graded and it is the K-linear span of the elements pq∗ for
paths p, q with r(p) = r(q) ∈ H and the elements pvHq∗ for paths p, q with r(p) = r(q) = v ∈ S
(see [1, Theorem 2.4.8]). The converse holds as well: for a graded ideal I, the set H = I ∩ E0 is
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hereditary and saturated and, if S = {v ∈ BH | vH ∈ I}, then I = I(H,S) ([1, Theorem 2.5.8]).
The lattice of graded ideals is isomorphic to the lattice of admissible pairs with the relation

(H,S) ≤ (K,T ) if H ⊆ K and S ⊆ K ∪ T.

If I is an ideal (not necessarily graded), it is uniquely determined by an admissible pair (H,S)
where H = I ∩ E0 and S = {v ∈ BH | vH ∈ I}, by a set C contained in the set CH of cycles
with vertices outside of H such that every exit from c ∈ CH has the range in H, and by a sets
P contained in the set of non-constant polynomials in K[x] with the 0-th coefficient 1K (see [1,
Theorem 2.8.10]). In this case, we write that I = I((H,S), C, P ). Such sets C and P determine
the set PC of elements p(c) for c ∈ C and p ∈ P. By [1, Proposition 2.8.5 and Theorem 2.8.10], if
I = I((H,S), C, P ) is an ideal of LK(E), then I is generated by H ∪ SH ∪ PC .

2.4. Annihilator ideals. If I is an ideal of LK(E), then annl(I), annr(I), and ann(I) are graded
ideals of LK(E) by [5, Theorem 3.3] and [8, Proposition 3.1]. By [8, Corollary 3.3 and Proposition
3.5], if I(H,S) is a graded ideal of LK(E) and if we let H⊥ = E0−R(H) and S⊥ = BH⊥ − S, then

annl(I(H,S)) = annr(I(H,S)) = ann(I(H,S)) = I(H⊥, S⊥).

Remark 2.1. We claim that S⊥ = BH⊥ . Indeed, if v ∈ BH⊥ , then v emits infinitely many edges
to H⊥ and nonzero and finitely many to E0 −H⊥ = E0 − (E0 − R(H)) = R(H). So, v emits only
finitely many edges to H. Hence, v /∈ BH , so v /∈ S. This shows that

ann(I(H,S)) = I(H⊥, BH⊥)

so ann(I(H,S)) does not depend on S.

In [8], an admissible pair (H,S) is said to be reflexive if (H,S) = (H⊥⊥, S⊥⊥). By [8, Proposition
3.10], a graded ideal I = I(H,S) is an annihilator ideal if and only if (H,S) is reflexive and, if so,
then S = BH . The above remark also implies this last formula.

2.5. S-saturation of a hereditary set. If H is a hereditary set, S is any set of vertices, and
G is any hereditary set which contains H, let GS denote the set {v ∈ S | r(s−1(v)) ⊆ G}. The

S-saturation H
S

of H is the smallest hereditary and saturated set G which contains H and such
that GS ⊆ G. Note that such smallest set G exists since the intersection of the hereditary and
saturated sets G′ which contain H and satisfy the relation (G′)S ⊆ G′ retains all these properties

of G′. The set H
S

can also be defined by an iterative process: if ΛS
0 (H) = H and

ΛS
n+1(H) = ΛS

n(H) ∪ {v ∈ E0 − ΛS
n(H) | v is either regular or in S and r(s−1(v)) ⊆ ΛS

n(H)},

then H
S

=
⋃∞
n=0 ΛS

n(H). The inclusion ⊆ holds since the union U =
⋃∞
n=0 ΛS

n(H) is a hereditary
and saturated set which contains H and such that US ⊆ U. The converse inclusion holds since the

induction can be used to show ΛS
n(H) ⊆ H

S
.

When introducing H
S

in [1, Definition 2.5.5], it is assumed that S ⊆ H ∪ BH . We do not
require this condition to hold because in cases when S * H ∪ BH , we would still like to have the
S-saturation of H defined. For example, if E is the graph below (the symbol (∞) above an edge e
denotes infinitely many edges from s(e) to r(e))

•v
(∞)

!!
•u66

>>

(∞)
// •w
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and if H = {w}, then BH = {u}. For S = {v}, S * H ∪ BH = {u,w} and HS = {v} * H. The
set G = {v, w} is a hereditary and saturated set which contains H, GS = {v} ⊆ G, and G is the

smallest such set, so H
S

= G.

3. Graded envelope and annihilator ideals

For the rest of the paper, we fix a graph E and a field K. For an ideal I (not necessarily graded)
of the Leavitt path algebra LK(E) of E over K, it is known that there is the largest graded ideal
Igr contained in I. If H = I ∩ E0 and S = {v ∈ BH | vH ∈ I, } then Igr = I(H,S) (see [1,
Lemma 2.8.9]). We consider the dual concept: the smallest graded ideal Igr which contains I.
Such an ideal exists since the intersection of all graded ideals which contain I is a graded ideal
and the term graded envelope of I would be suitable for Igr. The graded envelope can also be
characterized as the ideal generated by the homogeneous components of the elements of I, i.e. by
the set A = {an | a ∈ I, n ∈ Z}. Indeed, the ideal I(A) generated by A is graded because A consists
of homogeneous elements. The ideal I(A) contains the elements of I and it is the smallest such
ideal since if J is graded and contains I, then any a ∈ I is such that an ∈ J, for all n ∈ Z, so A ⊆ J.

We describe the graded envelope in terms of the corresponding admissible pair next.

Theorem 3.1. Let I be an ideal of LK(E) and let (H,S), C, and P be such that I = I((H,S), C, P ).
Let C0 be the set of vertices on cycles which are in C and let

G = H ∪ C0
S

and T = S −G.

Then T ⊆ BG, (H,S) ≤ (G, T ), and

Igr = I(G, T ).

Proof. If v ∈ T = S −G, then v ∈ BH , so v is an infinite emitter emitting infinitely many edges to
H and nonzero and finitely many to E0 − H. So, v emits infinitely many edges to G and finitely
many, say n, edges to E0 − G. For v ∈ BG to hold, we need to show that n > 0. Assume, on the
contrary, that n = 0. Then r(s−1(v)) ⊆ G so that v is in GS. As GS ⊆ G, v ∈ G. This contradicts
the assumption that v ∈ T = S −G. Hence, v ∈ BG.

By the definition of G and T, H ⊆ G and S ⊆ G ∪ T. So, (H,S) ≤ (G, T ).

For the inclusion Igr ⊆ I(G, T ), it is sufficient to prove that I ⊆ I(G, T ). As I is generated
by H ∪ SH ∪ PC , it is sufficient to prove that H, SH , and PC are contained in I(G, T ). Since
(H,S) ≤ (G, T ), H ∪ SH ⊆ I(G, T ). For c ∈ C, s(c) ∈ C0 ⊆ G, so c ∈ I(G, T ) which implies that
p(c) ∈ I(G, T ) for any p ∈ P.

For the inclusion I(G, T ) ⊆ Igr, it is sufficient to show that G ⊆ Igr and that TG ⊆ Igr. Let
Λn, n = 0, 1, . . . , be the sets ΛS

n(H ∪C0) defined as in section 2.5 which have the union equal to G.
We use induction to show that Λn ⊆ Igr for any n. For n = 0, we show that H ∪C0 ⊆ Igr. If v ∈ H,
then v ∈ I by the definition of H, so v ∈ Igr. If v ∈ C0, then there is c ∈ C and p ∈ P such that v
is a vertex in c and p(c) ∈ I. As the 0-component of p(c) is s(c), s(c) ∈ Igr. If p is a part of c from
s(c) to v, then p = s(c)p ∈ Igr which implies that v = r(p) = p∗p ∈ Igr.

Assuming that Λn ⊆ Igr, let v ∈ Λn+1. If v ∈ Λn, then v ∈ Igr. If v ∈ Λn+1−Λn, then r(s−1(v)) ⊆
Λn, so r(s−1(v)) ⊆ Igr by the induction hypothesis. Thus, for any e ∈ s−1(v), ee∗ = er(e)e∗ ∈ Igr.
If v is regular, then v =

∑
e∈s−1(v) ee

∗ ∈ Igr. If v is in S, then vH ∈ I ⊆ Igr. As v emits no edges
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outside of Λn, v
H = v −

∑
e∈s−1(v)∩r−1(Λn−H) ee

∗ and s−1(v) ∩ r−1(Λn −H) is finite. We have that

both vH and
∑

e∈s−1(v)∩r−1(Λn−H) ee
∗ are in Igr. So, v ∈ Igr.

It remains to show that TG ⊆ Igr. If vG ∈ TG then v ∈ T = S − G, so vH ∈ I ⊆ Igr. The set
s−1(v) ∩ r−1(G − H) is finite and vG = vH +

∑
e∈s−1(v)∩r−1(G−H) ee

∗, and, as r(e) ∈ G ⊆ Igr for

e ∈ e ∈ s−1(v) ∩ r−1(G−H), both vH and
∑

e∈s−1(v)∩r−1(G−H) ee
∗ are in Igr. So, vG ∈ Igr. �

Using Theorem 3.1, we prove the result from the title of the paper.

Theorem 3.2. If I = I((H,S), C, P ) is an ideal of LK(E) and G = H ∪ C0
S
, then

annl(I) = annr(I) = ann(I) = ann(Igr) = I(G⊥, BG⊥).

Proof. If I and G are as in the assumption of the theorem, then Igr = I(G,S−G) by Theorem 3.1.
The relation ann(Igr) = I(G⊥, BG⊥) holds by [8, Proposition 3.5] and Remark 2.1.

Recall that annl(I), annr(I), and ann(I) are graded ideals by [8, Proposition 3.1]. As I ⊆ Igr

and annl(I
gr) = annr(I

gr) = ann(Igr) (by [8, Corollary 3.3]), we have that

ann(Igr) ⊆ annl(I), ann(Igr) ⊆ annr(I), and ann(Igr) ⊆ ann(I).

For the converse inclusions, we show that annr(I) ⊆ ann(Igr). The inclusion annl(I) ⊆ ann(Igr)
follows by symmetry of the proof and these two imply that ann(I) ⊆ annl(I)∩ annr(I) ⊆ ann(Igr).

If G′ = annr(I) ∩ E0 and T ′ = {v ∈ BG′ | vG
′ ∈ annr(I)}, then showing G′ ⊆ G⊥ and T ′ ⊆ BG⊥

is sufficient for annr(I) ⊆ ann(Igr). Let v ∈ G′ so that Iv = 0. For v ∈ G⊥ = E0 − R(G), we
need to show that v /∈ R(G). Assume, on the contrary, that v ∈ R(G) so that there is a path
p from v to a vertex of G. As r(p) ∈ G ⊆ Igr, we have that pp∗ = pr(p)p∗ ∈ Igr. So, there
is a ∈ I such that a0 = pp∗. Since a ∈ I and v ∈ annr(I), av = 0. If a =

∑
n∈Z an, then

anv = 0 for any n ∈ Z. In particular, a0v = 0, so pp∗ = pp∗v = 0. This is a contradiction since
0 6= p = pp∗p. Thus, v /∈ R(G) which shows that G′ ⊆ G⊥. This inclusion and the inclusion
I(G⊥, T⊥) = ann(Igr) ⊆ annr(I) = I(G′, T ′) imply that G′ = G⊥. Hence, T ′ ⊆ BG′ = BG⊥ . �

4. Quasi-Baer Leavitt path algebras

4.1. Graded quasi-Baer property. If R is a Γ-graded ring, we say that R is graded quasi-Baer if
for any graded right ideal I, there is a homogeneous idempotent ε ∈ R such that annr(I) = εR. Just
as in the ungraded case, this definition is left-right symmetric and the condition that I is one-sided
can be replaced with the requirement that I is double-sided in the definition. The proof of these
claims is completely analogous to the proof of [3, Lemma 1].

Next, we relate the quasi-Baer and graded quasi-Baer conditions in Proposition 4.3. We use the
following two lemmas, most likely both well known, which we include for completeness.

Lemma 4.1. If R is a Γ-graded ring and M a graded right R-module, then annr(M) is a graded
ideal. Analogous claims hold for left modules and for bimodules.

Proof. If r ∈ annr(M), let r =
∑

γ∈Γ rγ be such that rγ ∈ Rγ. Let δ ∈ Γ and m ∈ Mδ be arbitrary.

As 0 = mr =
∑

γ∈Γmrγ, mrγ = 0 for all γ ∈ Γ, so rγ ∈ annr(M) for any γ ∈ Γ. Thus, annr(M) is
graded. The claims for left modules and bimodules are showed analogously. �
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Lemma 4.2. If R is a unital Γ-graded ring and if I is a graded right ideal for which there is a right
ideal J such that I ⊕ J = RR, then J is graded and there is a homogeneous idempotent ε ∈ R such
that J = εR.

Proof. If I and J are as in the assumption of the lemma, let r =
∑

γ∈Γ rγ ∈ J, let rγ = aγ +bγ where

aγ ∈ I and bγ ∈ J, and let a =
∑

γ∈Γ aγ and b =
∑

γ∈Γ bγ. Since a ∈ I, b ∈ J, and r = a + b ∈ J,
we have that a = 0, so aγ = 0 for all γ ∈ Γ. Hence, rγ = bγ ∈ J which shows that J is graded.
Consequently, the short exact sequence 0→ I → R→ J → 0 of graded right R-modules is split, so
there is a graded homomorphism ε′ in the endomorphism ring of R which is idempotent and such
that J = ε′(R). The idempotent ε = ε′(1R), where 1R is the identity of R, is homogeneous and such
that J = εR. �

Proposition 4.3. Let R be any ring.

(1) If R is graded and quasi-Baer, then R is graded quasi-Baer.
(2) If R is graded quasi-Baer and such that the annihilators of ideals are graded ideals, then R is

quasi-Baer.

Proof. Note that the assumptions of both parts imply that R is unital. In this case, we let 1R
denote the identity of R.

Let the assumption of (1) hold for R and let I be a graded right ideal. As R is quasi-Baer,
annr(I) is a direct summand of R. By Lemma 4.1, annr(I) is a graded ideal of R. By Lemma 4.2,
there is a homogeneous idempotent ε ∈ R such that annr(I) = εR.

Let the assumptions of (2) hold for R and let I be an ideal. By the assumption, annr(I) is a
graded ideal. As R is graded quasi-Baer, annl(annr(I)) = Rε for a homogeneous idempotent ε ∈ R.
So, 1R − ε is homogeneous and annr(I) = annr(annl(annr((I))) = annr(Rε) = (1R − ε)R. �

The annihilators of ideals of a Leavitt path algebra are graded by [8, Proposition 3.1] (also by
Theorem 3.2). Thus, by Proposition 4.3, a Leavitt path algebra is quasi-Baer if and only if it is
graded quasi-Baer.

4.2. Quasi-Baer Leavitt path algebras. Recall that a graph E and a field K were fixed. By
Theorem 3.2, we can drop the subscripts l and r from annl(I) and annr(I) for an ideal I of LK(E) and
write only ann(I) without any danger of ambiguity. Let ann2(I) shorten ann(ann(I)) and ann3(I)
shorten ann2(ann(I)). By [8, Propositions 3.7 and 3.10] (also by Theorem 3.2), ann3(I) = ann(I).

The algebra L = LK(E) is a semiprime ring (if I2 = 0 then I = 0 for any ideal I, see [1,
Proposition 2.3.1]). So, for an ideal I, if a ∈ I ∩ ann(I) then aLa = 0. As L is locally unital and
semiprime, a = 0, and so I ∩ ann(I) = 0. This implies that the lattice of annihilator ideals is a
Boolean algebra where the meet is the intersection and the join is given by

I ∨ J = ann(ann(I) ∩ ann(J)) = ann2(I + J)

(see also [8, Section 3.6]). Thus, the join of ann(I) and ann2(I) is the annihilator of ann2(I) ∩
ann3(I) = ann2(I) ∩ ann(I) = 0, so ann(I) ∨ ann2(I) = L. The annihilator ann(I) is a direct
summand of L exactly when this join is equal to the sum, i.e when ann(I) + ann2(I) = L.

By [1, Proposition 2.5.6], the smallest graded ideal which contains two graded ideals I(H1, S1)
and I(H2, S2) is the graded ideal corresponding to the admissible pair

(H1, S1) ∨ (H1, S1) = (H1 ∪H2
S1∪S2

, S1 ∪ S2 −H1 ∪H2
S1∪S2

).
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To shorten the notation, if S1 = BH1 and S2 = BH2 , let us denote the set H1 ∪H2
S1∪S2

by H1 ∨H2.

If I is an ideal and Igr = I(G, T ), the condition ann(I) + ann2(I) = LK(E) is equivalent to the
graph-theoretic condition (G⊥, BG⊥) ∨ (G⊥⊥, BG⊥⊥) = (E0, ∅), which we write shorter as

G⊥ ∨G⊥⊥ = E0.

The following examples illustrate that the above condition does not necessarily hold even for
graded ideals I which are closed in the sense that ann2(I) = I.

Example 4.4. Let E be any of the graphs below.

•u •voo //
��

•w •u •v
(∞)
oo

(∞)
// •w

and let I = I({u}, ∅). As I is graded, I = Igr, so H = G = {u}, G⊥ = E0 −R(G) = E0 − {u, v} =
{w}, and G⊥⊥ = E0 − R(E0 − R(G)) = E0 − {v, w} = {u} = G. We have that BG⊥ = ∅ and
BG⊥⊥ = BG = ∅, so the set G⊥ ∨G⊥⊥ is just the saturation of G∪G⊥ = {u,w}. The set G∪G⊥ is
hereditary and saturated already, so this saturation is {u,w} ( E0. Note also that ann(I) = I(w),
ann2(I) = I = I(u), and I(u) + I(w) = I({u,w}) does not contain v.

Proposition 4.5. The following conditions are equivalent.

(1) The algebra L = LK(E) is quasi-Baer.
(2) The set E0 is finite and H⊥ ∨H⊥⊥ = E0 for any hereditary and saturated set H.

Proof. If (1) holds, then L is unital, so E0 is finite. If H is any hereditary and saturated set,
let I = I(H, ∅) so that ann(I) = I(H⊥, BH⊥). By (1), there is an idempotent ε ∈ L such that
ann(I) = εL, so J = (1L − ε)L is a right ideal disjoint from ann(I) and such that J + ann(I) = L.
As L is semiprime, this implies that J = annr(ann(I)), so J is a double-sided ideal of L. Moreover,
J is graded by Lemma 4.2 and J = ann2(I) = I(H⊥⊥, BH⊥⊥). As ann(I)⊕J = L, H⊥∨H⊥⊥ = E0.

To show the converse, assume that (2) holds, so L is unital. Let I be any ideal of L. By Theorem
3.2, ann(I) = I(G⊥, BG⊥) where G is the set from the admissible pair (G, T ) such that Igr = I(G, T ).
The relation G⊥ ∨ G⊥⊥ = E0 implies that ann(I) + ann2(I) = I(E0, ∅) = L. As L is semiprime,
ann(I) ∩ ann2(I) = 0, so ann(I)⊕ ann2(I) = L. Thus, (1) holds. �

4.3. Relation to Baer and Rickart Leavitt path algebras. Recall that a ring R is Baer if, for
any set X ⊆ R, there is an idempotent ε ∈ R such that annr(X) = εR and that R is right Rickart
if the same condition holds when |X| = 1. Left Rickart ring is defined by an analogous condition for
left annihilators and a ring is Rickart if it is both left and right Rickart. Each of these conditions
implies that R is unital.

It is direct that a Baer ring is both Rickart and quasi-Baer and it is known that both implications
are strict. As all three conditions have now been characterized for Leavitt path algebras, it is
rather direct to obtain examples of algebras which are Rickart or quasi-Baer and not Baer. By [7,
Proposition 13 and Theorem 15], LK(E) is Baer if and only if E is a finite graph in which no cycle
has exits and LK(E) is Rickart if and only if E0 is finite. Thus, if E is the graph •

yy%%
, then

LK(E) is Rickart and not Baer. There are no nonempty and proper hereditary sets, so condition (2)
of Proposition 4.5 trivially holds and, hence, LK(E) is quasi-Baer by Proposition 4.5. If E is any
of the graphs from Example 4.4, then LK(E) is Rickart and not quasi-Baer. As any unital Leavitt
path algebra is Rickart (by [7, Proposition 13]), a quasi-Baer Leavitt path algebra is Rickart.
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4.4. Quasi-Baer *-rings. Recall that for any a ∈ LK(E), a =
∑n

i=1 kipiq
∗
i for some n, paths pi and

qi, and ki ∈ K, for i = 1, . . . , n where v∗ = v for v ∈ E0 and p∗ = e∗n . . . e
∗
1 for a path p = e1 . . . en. If

ki 7→ k∗i is any involution on K, then letting (
∑n

i=1 kipiq
∗
i )
∗

=
∑n

i=1 k
∗
i qip

∗
i gives LK(E) the structure

of an involutive K-algebra. The involutive properties of LK(E) are fundamentally impacted by the
properties of the involution on K. In particular, the involution on K is positive definite (i.e for
any n and any ki ∈ K, i = 1, . . . , n if

∑n
i=1 kik

∗
i = 0 then ki = 0 for all i = 1, . . . n) if and only if

the involution on LK(E) is positive definite (see [7, Proposition 12]). The involution on LK(E) is
compatible with the natural grading in the sense that LK(E)∗n ⊆ LK(E)−n for any n ∈ Z.

In an involutive ring, a projection is a self-adjoint idempotent. If “idempotent” is replaced by
“projection” in the definitions of a Baer, a quasi-Baer, and a Rickart ring, we obtain the definitions of
a Baer ∗-ring, a quasi-Baer ∗-ring, and a Rickart ∗-ring, respectively. The graded version of a quasi-
Baer ∗-ring is obtained by requiring the ideal to be graded and the projection to be homogeneous.

If the involution on K is positive definite, [7, Proposition 13 and Theorems 15 and 16] characterize
Leavitt path algebras which are Baer ∗-rings, graded Baer ∗-rings and graded Rickart ∗-rings. These
results and examples from [7] show that while Baer, graded Baer and graded Baer ∗ are equivalent
conditions, Baer ∗ is strictly stronger from these and the same statement holds if “Baer” is replaced
with “Rickart”. In contrast, all four quasi-Baer conditions are equivalent for Leavitt path algebras
as we show next.

Proposition 4.6. If K is a field with positive definite involution, the following conditions are
equivalent.

(1) The algebra LK(E) is a quasi-Baer ∗-ring.
(2) The algebra LK(E) is a graded quasi-Baer ∗-ring.
(3) The algebra LK(E) is graded quasi-Baer.
(4) The algebra LK(E) is quasi-Baer.

Proof. The implication (2)⇒ (3) is direct and (3)⇔(4) holds by Proposition 4.3 (see the paragraph
following the proof of Proposition 4.3). We show the implications (1) ⇒ (2) and (4) ⇒ (1).

If (1) holds and I is a graded ideal of L = LK(E), the proof of (1) ⇒ (2) of Proposition 4.3
shows that there is a homogeneous idempotent ε such that ann(I) = εL. As L is graded regular
(by [6, Theorem 9]) and the involution on L is positive definite (by [7, Proposition 12]), for every
homogeneous idempotent ε of L, there is a homogeneous projection π such that εL = πL (by [7,
Proposition 5]). Thus, ann(I) = πL for a homogeneous projection π. So, (2) holds.

To show (4)⇒(1), assume that (4) holds. By [2, Proposition 1.1] and as L = LK(E) is semiprime,
to show (1) it is sufficient to show that each central idempotent is a projection. If ε is a central
idempotent, then εL = Lε is a double-sided ideal and so ann(εL) = annr(Lε) = (1L − ε)L is a
graded ideal. So, ann((1L − ε)L) = εL is also a graded ideal by Lemma 4.2. As every graded ideal
is self-adjoint (see [1, Corollary 2.4.10]), εL = Lε∗. This relation and ε being central, imply that
εL = ε∗L, so that ε = ε∗ε = εε∗ = ε∗. Thus, ε is a projection. �
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