Conquering Dimensions

Lia Vaš

University of the Sciences, Philadelphia

In your math courses ...

... you get to learn about a lot of concepts.

$$
\vec{a} \times \vec{b}=\left(a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right)
$$

$$
\vec{F}=(P, Q, R) \Rightarrow W=\int_{C} \vec{F} \cdot d \vec{r}=\int_{C} P d x+Q d y+R d z
$$

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

$$
\begin{aligned}
& V=\iiint d x d y d z= \\
& \iiint r^{2} \cos \phi d r d \theta d \phi
\end{aligned}
$$

Difficult but important (1)

Real World (other disciplines)

Crossing the bridge

Example: Point Groups in Chemistry

Geometry of a molecule

Electronic and vibronic states, electronic spectrum, other molecular properties

Difficult but important (2)

Adapting what you learn to more general set ups or more complex situations.

Example 1 - Chain Rule

y	y^{\prime}			
$\underset{(f(x))^{n}}{(f)}$	$\begin{gathered} n(f(x))^{n-1} \quad f^{\prime}(x) \\ e^{f(x)} f^{\prime}(x) \\ \frac{f(x)}{f(x)}(x) \\ \cos (f(f)) f^{\prime}(x) \\ \frac{1}{\sqrt{1-(f(x))^{\prime}}} f^{\prime}(x) \end{gathered}$	\rightarrow	y	y^{\prime}
$\underline{e} \ln (f(x))$			$g(f(x))$	$g^{\prime}(f(x)) f^{\prime}(x)$
$\begin{gathered} \sin (f(x)) \\ \arcsin (f(x)) \end{gathered}$				

y	$\frac{d y}{d t}$			
$g(f(t))$	$\frac{d g}{d f} d t$	\rightarrow	$d t$	y
:---:	:---:			
$g\left(f_{1}(t), f_{2}(t), \ldots f_{n}(t)\right)$	$\sum_{i=1}^{n} \frac{d y}{d t} \frac{\partial f}{\partial t} \frac{d f}{d t}$			

Example 2

A line $\mathbf{y}=\mathbf{m} \mathbf{x}+\mathbf{b}$ or $\mathbf{y}=\mathbf{m t}+\mathbf{y}(\mathbf{0})$

$$
\text { Vector equation of a line: } \quad \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{m}} \mathbf{t}+\overrightarrow{\mathbf{r}_{0}}
$$

$$
\begin{aligned}
& \text { If } \vec{m}=(a, b, c) \text { and } \overrightarrow{r_{0}}=\left(x_{0}, y_{0}, z_{0}\right) \text {, } \\
& \vec{r}=\vec{m} t+\overrightarrow{r_{0}} \\
& x=a t+x_{0} \\
& y=b t+y_{0} \\
& z=c t+z_{0}
\end{aligned}
$$

Example 3

$$
y=f(x) \geq 0
$$

Area under $f(x)$
is
$A=\int_{a}^{b} f(x) d x$

$$
z=f(x, y) \geq 0
$$

Volume under $f(x, y)$
is
$V=\iint_{R} f(x, y) d x d y$

Example 4

$$
\begin{aligned}
& \text { If } f(x)=F^{\prime}(x), \\
& \text { then } \\
& (x) d x=\int_{a}^{b} F^{\prime}(x) \\
& =F(b)-F(a)
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } \vec{f}(\vec{r})=\nabla F(\vec{r}) \text { and } \\
& C_{\text {init. }}=\vec{r}(a), C_{\text {final }}=\vec{r}(b), \\
& \text { then } \\
& \int_{C} \vec{f}(\vec{r}(t)) d \vec{r}=\int_{C} \nabla F d \vec{r}= \\
& \quad=F(\vec{r}(b))-F(\vec{r}(a))
\end{aligned}
$$

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} F^{\prime}(x) d x=\int_{C} \vec{f}(\vec{r}(t)) d \vec{r}=\int_{C} \nabla F d \vec{r}=
$$

Work done by the force \vec{f} acting along the curve C from $C_{\text {initial }}=\vec{r}(a)$ to
$C_{\text {final }}=\vec{r}(b)$.

Today's agenda

To generalize the cross product from 3 to higher dimensions.

Cross product in 3-dimensions. Main features

If given two vectors \vec{a} and \vec{b} are not colinear:

1. $\vec{a} \times \vec{b}$ is a vector perpendicular to both \vec{a} and \vec{b}.
2. The length of $\vec{a} \times \vec{b}$ is the area of parallelogram determined by \vec{a} and \vec{b}.
If \vec{a} and \vec{b} are colinear:
3. $\vec{a} \times \vec{b}=\overrightarrow{0}$.

Computing the cross product in 3-dimensions

$$
\begin{aligned}
& \text { If } \vec{a}=\left(a_{1}, a_{2}, a_{3}\right) \text { and } \vec{b}=\left(b_{1}, b_{2}, b_{3}\right) \text {, then } \\
& \begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k} \\
& =\left(a_{2} b_{3}-a_{3} b_{2}, \quad-\left(a_{1} b_{3}-a_{3} b_{1}\right), \quad a_{1} b_{2}-a_{2} b_{1}\right)
\end{aligned}
\end{aligned}
$$

Recall that $\vec{i}=(1,0,0), \vec{j}=(0,1,0)$ and $\vec{k}=(0,0,1)$.

How would you check the property 1 ?

Recall: we need to check that

$$
\vec{a} \times \vec{b} \text { is perpendicular to } \vec{a}
$$

and that

$$
\vec{a} \times \vec{b} \text { is perpendicular to } \vec{b}
$$

Checking the three properties. Property 1.

To check that the two vectors are perpendicular you want to

check that their dot product is zero.

$$
\begin{gathered}
(\vec{a} \times \vec{b}) \cdot \vec{a}= \\
=\left(a_{2} b_{3}-a_{3} b_{2},-\left(a_{1} b_{3}-a_{3} b_{1}\right), a_{1} b_{2}-a_{2} b_{1}\right) \cdot\left(a_{1}, a_{2}, a_{3}\right)= \\
=\underline{a_{1} a_{2} b_{3}}-\overline{a_{1} a_{3} b_{2}}-\underline{a_{1} a_{2} b_{3}}+\underbrace{a_{2} a_{3} b_{1}}+\overline{a_{1} a_{3} b_{2}}-\underbrace{a_{2} a_{3} b_{1}}=0
\end{gathered}
$$

Note that $(\vec{a} \times \vec{b}) \cdot \vec{a}=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right|=0$

Checking the three properties. Property 2.

Use the formula

$$
|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta
$$

Area of parallelogram $=$ base times the height.
Base $=|\vec{a}|$, height $=|\vec{b}| \sin \theta$

a

Checking the three properties. Property 3.

If nonzero, \vec{a} and \vec{b} are colinear if (and only if) there is a constant k such that

$$
\vec{b}=k \vec{a} \quad \text { that is } b_{1}=k a_{1}, b_{2}=k a_{2}, b_{3}=k a_{3} .
$$

Calculate that

$$
\left|\begin{array}{cc}
a_{2} & a_{3} \\
k a_{2} & k a_{3}
\end{array}\right|=0,\left|\begin{array}{cc}
a_{1} & a_{3} \\
k a_{1} & k a_{3}
\end{array}\right|=0,\left|\begin{array}{cc}
a_{1} & a_{2} \\
k a_{1} & k a_{2}
\end{array}\right|=0 .
$$

Another way to check property 3

Use the formula

$$
|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta
$$

$\vec{a} \times \vec{b}=\overrightarrow{0} \rightarrow|\vec{a} \times \vec{b}|=0 \rightarrow|\vec{a}||\vec{b}| \sin \theta=0 \rightarrow$ $\sin \theta=0 \rightarrow \theta=0$ or 180°.

Conversely,
\vec{a} and \vec{b} are colinear $\rightarrow \theta=0$ or $180_{\vec{\circ}} \rightarrow \underset{\vec{b}}{\sin } \theta=0 \rightarrow$ $|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta=0 \rightarrow \vec{a} \times \vec{b}=\overrightarrow{0}$.

Tim was not convinced...

Timothy P. Enright, chem. major at the time, in 2008 calc. 3 class: wanted to "see" why $|\vec{a} \times \vec{b}|$ is the area of the parallelogram.

Tim began to investigate projections of \vec{a} and \vec{b} onto the different coordinate planes. For $x y$-plane, he denoted:

$$
\begin{aligned}
& a_{\text {hor }}=\text { length of proj. of } \vec{a} \text { on } x \text {-axis } \\
& \text { and } \\
& a_{\text {ver }}=\text { length of proj. of } \vec{a} \text { on } y \text {-axis. }
\end{aligned}
$$

And obtain the following images...

Tim's projections

On the first figure,

$$
\begin{gathered}
\left(a_{\text {hor }}+b_{\text {hor }}\right)\left(a_{v e r}+b_{v e r}\right)-2 \cdot \frac{1}{2} a_{h o r} a_{v e r}-2 \cdot \frac{1}{2} b_{\text {hor }} b_{v e r}-2 \cdot a_{h o r} b_{v e r}= \\
=a_{\text {ver }} b_{\text {hor }}-a_{\text {hor }} b_{v e r}
\end{gathered}
$$

It works

Tim concluded that the three terms compute the areas of three projected parallelograms.

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k} \\
& =\left(a_{2} b_{3}-a_{3} b_{2}, \quad-\left(a_{1} b_{3}-a_{3} b_{1}\right), \quad a_{1} b_{2}-a_{2} b_{1}\right)
\end{aligned}
$$

From 3 to 4 dimensions

Cross product in

	three dimensions	four dimensions
projections	parallelograms	parallelepipeds
i-th coordinate computed by	area of parallelogram 2×2 determinant	volume of parallelepiped 3×3 determinant

Volume of the parallelepiped

Volume spanned by \vec{a}, \vec{b} and \vec{c} is

$$
\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

Thus, the formula for $\vec{a} \times \vec{b} \ldots$

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| \\
& =\left|\begin{array}{ll}
a_{2} & a_{3} \\
b_{2} & b_{3}
\end{array}\right| \vec{i}-\left|\begin{array}{ll}
a_{1} & a_{3} \\
b_{1} & b_{3}
\end{array}\right| \vec{j}+\left|\begin{array}{ll}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right| \vec{k} \\
& =\left(\begin{array}{lll}
a_{2} b_{3}-a_{3} b_{2}, & -\left(a_{1} b_{3}-a_{3} b_{1}\right), & \left.a_{1} b_{2}-a_{2} b_{1}\right) .
\end{array} . . \begin{array}{lll}
\end{array}\right)
\end{aligned}
$$

... generalizes to...

Product in 4 dimensions

$$
\begin{aligned}
& \vec{a} \times \vec{b} \times \vec{c}=\left|\begin{array}{cccc}
\vec{i} & \vec{j} & \vec{k} & \vec{l} \\
a_{1} & a_{2} & a_{3} & a_{4} \\
b_{1} & b_{2} & b_{3} & b_{4} \\
c_{1} & c_{2} & c_{3} & c_{4}
\end{array}\right| \\
& \left|\begin{array}{lll}
a_{2} & a_{3} & a_{4} \\
b_{2} & b_{3} & b_{4} \\
c_{2} & c_{3} & c_{4}
\end{array}\right| \vec{i}-\left|\begin{array}{lll}
a_{1} & a_{3} & a_{4} \\
b_{1} & b_{3} & b_{4} \\
c_{1} & c_{3} & c_{4}
\end{array}\right| \vec{j}+\left|\begin{array}{lll}
a_{1} & a_{2} & a_{4} \\
b_{1} & b_{2} & b_{4} \\
c_{1} & c_{2} & c_{4}
\end{array}\right| \vec{k}-\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right| \vec{\imath}= \\
& \left(\left|\begin{array}{lll}
a_{2} & a_{3} & a_{4} \\
b_{2} & b_{3} & b_{4} \\
c_{2} & c_{3} & c_{4}
\end{array}\right|,-\left|\begin{array}{lll}
a_{1} & a_{3} & a_{4} \\
b_{1} & b_{3} & b_{4} \\
c_{1} & c_{3} & c_{4}
\end{array}\right|,\left|\begin{array}{lll}
a_{1} & a_{2} & a_{4} \\
b_{1} & b_{2} & b_{4} \\
c_{1} & c_{2} & c_{4}
\end{array}\right|,-\left|\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|\right)
\end{aligned}
$$

The three properties continue to hold. Property 1.

1. $\vec{a} \times \vec{b} \times \vec{c}$ is a vector perpendicular to \vec{a}, \vec{b} and \vec{c}.

Two $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ and $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ are orthogonal if their dot product $x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}$ is zero.

Property 2.

2. The length of $\vec{a} \times \vec{b} \times \vec{c}$ is the area volume of parallelegram parallelepiped determined by \vec{a}, \vec{b} and \vec{c}.
Volume $=$ hight times (area of the base)

$$
\begin{aligned}
& =|\vec{a}| \cos \alpha \text { times }|\vec{b} \times \vec{c}| \\
& =|\vec{a}||\vec{b}||\vec{c}| \cos \alpha \sin \theta
\end{aligned}
$$

$$
|\vec{a} \times \vec{b} \times \vec{c}|=|\vec{a}||\vec{b}||\vec{c}| \cos \alpha \sin \theta
$$

Property 3.

If \vec{a}, \vec{b} and \vec{c} are eolinear coplanar :
3. $\vec{a} \times \vec{b} \times \vec{c}=\overrightarrow{0}$.

Use the formula

$$
|\vec{a} \times \vec{b} \times \vec{c}|=|\vec{a}||\vec{b}||\vec{c}| \cos \alpha \sin \theta
$$

The vectors are in the same plane iff $\alpha=90^{\circ}$ iff $|\vec{a} \times \vec{b} \times \vec{c}|=$ volume $=0$ iff $\vec{a} \times \vec{b} \times \vec{c}=\overrightarrow{0}$.

Generalize to higher dimensions

Get the wedge (or exterior) product. In higher dimensions wedge \wedge is used instead of cross \times.

- Start with $n-1 n$-dimensional vectors

$$
\overrightarrow{a_{i}}=\left\langle a_{i 1}, a_{i 2}, \ldots, a_{i n}\right\rangle, i=1, \ldots, n-1 .
$$

- The result $\overrightarrow{a_{1}} \wedge \overrightarrow{a_{2}} \wedge \ldots \wedge \overrightarrow{a_{n-1}}$ is an n-dimensional vector with the i-th coordinate equal to:

$$
A_{i}=(-1)^{1+i}\left|\begin{array}{ccc}
a_{11} & \ldots & a_{1 i-1} \\
a_{21} & \cdots & a_{2 i-1} \\
\vdots & & \vdots \\
a_{n-11} & \cdots & a_{n-1 i-1} \\
a_{1 i} & \begin{array}{c}
a_{2 i} \\
a_{1 i+1} \\
a_{2 i+1} \\
a_{n-1 i}
\end{array} & \cdots \\
\vdots & a_{1 n} \\
a_{n-1 i+1} & \cdots & a_{n-1 n}
\end{array}\right|
$$

If you took linear algebra...

$$
\begin{aligned}
& \text { Let } \overrightarrow{e_{1}}=(1,0, \ldots, 0), \overrightarrow{e_{2}}=(0,1, \ldots, 0), \ldots \\
& \overrightarrow{e_{n}}=(0,0, \ldots, 1)
\end{aligned}
$$

$$
\overrightarrow{a_{1}} \wedge \overrightarrow{a_{2}} \wedge \ldots \wedge \overrightarrow{a_{n-1}}=\left|\begin{array}{cccc}
\overrightarrow{e_{1}} & \overrightarrow{e_{2}} & \ldots & \overrightarrow{e_{n}} \\
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{i 1} & a_{i 2} & \ldots & a_{i n}
\end{array}\right|=
$$

the first row determinant expansion $=A_{1} \overrightarrow{e_{1}}+A_{2} \overrightarrow{e_{2}}+\ldots+A_{n} \overrightarrow{e_{n}}=$

$$
=\left(A_{1}, A_{2}, \ldots, A_{n}\right)
$$

The three properties still hold

Property 1.

1. $\overrightarrow{a_{1}} \wedge \overrightarrow{a_{2}} \wedge \ldots \wedge \overrightarrow{a_{n-1}}$ is perpendicular to all of $\overrightarrow{a_{1}}, \ldots \overrightarrow{a_{n-1}}$.

Note that

$$
\overrightarrow{a_{1}} \cdot\left(\overrightarrow{a_{1}} \wedge \overrightarrow{a_{2}} \wedge \ldots \wedge \overrightarrow{a_{n-1}}\right)=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{i 1} & a_{i 2} & \ldots & a_{i n}
\end{array}\right|=0
$$

Property 2

The generalization of a parallelepiped
in n-dimensions is called an n-parallelotope.

Property 2.

2. The length of $\overrightarrow{a_{1}} \wedge \overrightarrow{a_{2}} \wedge \ldots \wedge \overrightarrow{a_{n-1}}$ is the volume of n-parallelotope determined by $\overrightarrow{a_{1}}, \ldots \overrightarrow{a_{n-1}}$.

$$
V=\left|\overrightarrow{a_{1}} \wedge \overrightarrow{a_{2}} \wedge \ldots \wedge \overrightarrow{a_{n-1}}\right|
$$

Property 3

If $\overrightarrow{a_{1}}, \ldots \overrightarrow{a_{n-1}}$ are coplanar in an $n-1$-dimensional plane:
3. $\overrightarrow{a_{1}} \wedge \overrightarrow{a_{2}} \wedge \ldots \wedge \overrightarrow{a_{n-1}}=\overrightarrow{0}$.

1-dim. plane $=$ line
2-dim. plane $=$ plane
n-dim. plane

$$
\begin{gathered}
a x+b y=c \\
a x+b y+c z=d \\
\ldots \\
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n+1} x_{n+1}=b
\end{gathered}
$$

In the same way you can...

1. Define n-dimensional "surfaces" (called manifolds then).
2. Define derivatives on manifolds and tangent n-plane at a point.

3. Define n-tuple integrals and use to compute n-volumes.

In this case, you are doing differential geometry.

References

On cross product:

- L. Vas, T. P. Enright, Generalization of Cross Product to Higher Dimensions Using Geometric Approach, For the Learning of Mathematics, 30 (2), (2010) 24 - 25.

Further material on exterior product and algebras:

- N. Bourbaki, Elements of mathematics, Algebra I, Springer-Verlag, 1989.
- S. MacLane, G. Birkhoff, Algebra, AMS Chelsea, 1999.
- Wikipedia.

Preprint of Tim and my paper is available on

http://www.usciences.edu/~Ivas.

