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In your math courses ...

... you get to learn about a lot of concepts.

−→a ×
−→
b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

−→
F = (P ,Q,R)⇒ W =

∫
C

−→
F · d−→r =

∫
C

Pdx + Qdy + Rdz

∫ b

a
f (x)dx = F (b)− F (a)

V =
∫ ∫ ∫

dx dy dz =∫ ∫ ∫
r 2 cosφdr dθ dφ



Difficult but important (1)

Math
Courses

Real World
(other

disciplines)



Crossing the bridge

Example: Point Groups in Chemistry

Geometry of a molecule −→ Symmetry (point) group

↓

Electronic and vibronic
states, electronic spectrum,
other molecular properties

←− Group Representation



Difficult but important (2)

Adapting what you learn to more general set ups
or more complex situations.



Example 1 – Chain Rule

y y ′

(f (x))n n (f (x))n−1 f ′(x)
e f (x) e f (x) f ′(x)

ln(f (x)) 1
f (x)

f ′(x)

sin(f (x)) cos (f (x)) f ′(x)
arcsin(f (x)) 1√

1−(f (x))2
f ′(x)

→

y y ′

g (f (x)) g ′ (f (x)) f ′(x)

y dy
dt

g (f (t)) dg
df

df
dt

→

y dy
dt

g(f1(t), f2(t), . . . fn(t))
∑n

i=1
∂g
∂fi

dfi
dt



Example 2

A line y = mx + b or y = mt + y(0) →

Vector equation of a line: −→r = −→mt+−→r0

If −→m = (a, b, c) and −→r0 = (x0, y0, z0),

−→r = −→mt +−→r0

↓

x = at + x0

y = bt + y0

z = ct + z0



Example 3

y = f (x) ≥ 0 z = f (x , y) ≥ 0
Area under f (x) Volume under f (x , y)

is is

A =
∫ b

a
f (x)dx V =

∫ ∫
R

f (x , y)dxdy



Example 4

If f (x) = F ′(x), If
−→
f (−→r ) = ∇F (−→r ) and

Cinit. = −→r (a), Cfinal = −→r (b),
then then∫ b

a
f (x)dx =

∫ b

a
F ′(x)dx =

∫
C

−→
f (−→r (t))d−→r =

∫
C
∇Fd−→r =

= F (b)− F (a) = F (−→r (b))− F (−→r (a))

Work done by the force
−→
f

acting along the curve C
from Cinitial = −→r (a) to
Cfinal = −→r (b).



Today’s agenda

To generalize the cross product from 3 to higher dimensions.



Cross product in 3-dimensions. Main features

If given two vectors −→a and
−→
b are not colinear:

1. −→a ×
−→
b is a vector perpendicular to both −→a and

−→
b .

2. The length of −→a ×
−→
b is the area of parallelogram

determined by −→a and
−→
b .

If −→a and
−→
b are colinear:

3. −→a ×
−→
b =

−→
0 .



Computing the cross product in 3-dimensions

If −→a = (a1, a2, a3) and
−→
b = (b1, b2, b3), then

−→a ×
−→
b =

∣∣∣∣∣∣
−→
i
−→
j
−→
k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
=

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣−→i − ∣∣∣∣ a1 a3

b1 b3

∣∣∣∣−→j +

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣−→k
= (a2b3 − a3b2, −(a1b3 − a3b1), a1b2 − a2b1).

Recall that
−→
i = (1, 0, 0),

−→
j = (0, 1, 0) and

−→
k = (0, 0, 1).



How would you check the property 1?

Recall: we need to check that

−→a ×
−→
b is perpendicular to −→a ,

and that

−→a ×
−→
b is perpendicular to

−→
b .



Checking the three properties. Property 1.

To check that the two vectors are perpendicular you want to

check that their dot product is zero.

(−→a ×
−→
b ) · −→a =

= (a2b3 − a3b2, −(a1b3 − a3b1), a1b2 − a2b1) · (a1, a2, a3) =

= a1a2b3 − a1a3b2 − a1a2b3 + a2a3b1︸ ︷︷ ︸+a1a3b2 − a2a3b1︸ ︷︷ ︸ = 0

Note that (−→a ×
−→
b ) · −→a =

∣∣∣∣∣∣
a1 a2 a3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = 0



Checking the three properties. Property 2.

Use the formula

|−→a ×
−→
b | = |−→a ||

−→
b | sin θ

Area of parallelogram = base times the height.

Base = |−→a |, height =|
−→
b | sin θ



Checking the three properties. Property 3.

If nonzero, −→a and
−→
b are colinear if (and only if) there is a

constant k such that

−→
b = k−→a that is b1 = ka1, b2 = ka2, b3 = ka3.

Calculate that∣∣∣∣ a2 a3

ka2 ka3

∣∣∣∣ = 0,

∣∣∣∣ a1 a3

ka1 ka3

∣∣∣∣ = 0,

∣∣∣∣ a1 a2

ka1 ka2

∣∣∣∣ = 0.



Another way to check property 3

Use the formula

|−→a ×
−→
b | = |−→a ||

−→
b | sin θ

−→a ×
−→
b =

−→
0 → |−→a ×

−→
b | = 0→ |−→a ||

−→
b | sin θ = 0 →

sin θ = 0 → θ = 0 or 180◦.

Conversely,
−→a and

−→
b are colinear → θ = 0 or 180◦ → sin θ = 0 →

|−→a ×
−→
b | = |−→a ||

−→
b | sin θ = 0→ −→a ×

−→
b =

−→
0 .



Tim was not convinced...

Timothy P. Enright, chem. major at the time, in 2008 calc.

3 class: wanted to “see” why |−→a ×
−→
b | is the area of the

parallelogram.

Tim began to investigate projections of −→a and
−→
b onto the

different coordinate planes. For xy -plane, he denoted:

ahor = length of proj. of −→a on x-axis
and

aver = length of proj. of −→a on y-axis.

And obtain the following images...



Tim’s projections

On the first figure,

(ahor +bhor )(aver +bver )−2·1
2
ahoraver−2·1

2
bhorbver−2·ahorbver =

= averbhor − ahorbver



It works

Tim concluded that the three terms compute the areas of
three projected parallelograms.

−→a ×
−→
b =

∣∣∣∣∣∣
−→
i
−→
j
−→
k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
=

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣−→i − ∣∣∣∣ a1 a3

b1 b3

∣∣∣∣−→j +

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣−→k
= (a2b3 − a3b2, −(a1b3 − a3b1), a1b2 − a2b1).



From 3 to 4 dimensions

Cross product in

three dimensions four dimensions

projections parallelograms parallelepipeds
i -th coordinate area of parallelogram volume of parallelepiped
computed by 2× 2 determinant 3× 3 determinant



Volume of the parallelepiped

Volume spanned by −→a ,
−→
b and −→c is∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣



Thus, the formula for −→a ×
−→
b ...

−→a ×
−→
b =

∣∣∣∣∣∣
−→
i
−→
j
−→
k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
=

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣−→i − ∣∣∣∣ a1 a3

b1 b3

∣∣∣∣−→j +

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣−→k
= (a2b3 − a3b2, −(a1b3 − a3b1), a1b2 − a2b1).

... generalizes to...



Product in 4 dimensions

−→a ×
−→
b ×−→c =

∣∣∣∣∣∣∣∣
−→
i
−→
j
−→
k
−→
l

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

∣∣∣∣∣∣∣∣
˛̨̨̨
˛̨ a2 a3 a4

b2 b3 b4

c2 c3 c4

˛̨̨̨
˛̨−→i −

˛̨̨̨
˛̨ a1 a3 a4

b1 b3 b4

c1 c3 c4

˛̨̨̨
˛̨−→j +

˛̨̨̨
˛̨ a1 a2 a4

b1 b2 b4

c1 c2 c4

˛̨̨̨
˛̨−→k −

˛̨̨̨
˛̨ a1 a2 a3

b1 b2 b3

c1 c2 c3

˛̨̨̨
˛̨−→l =

0@˛̨̨̨˛̨ a2 a3 a4

b2 b3 b4

c2 c3 c4

˛̨̨̨
˛̨ , −

˛̨̨̨
˛̨ a1 a3 a4

b1 b3 b4

c1 c3 c4

˛̨̨̨
˛̨ ,
˛̨̨̨
˛̨ a1 a2 a4

b1 b2 b4

c1 c2 c4

˛̨̨̨
˛̨ , −

˛̨̨̨
˛̨ a1 a2 a3

b1 b2 b3

c1 c2 c3

˛̨̨̨
˛̨
1A



The three properties continue to hold. Property 1.

1. −→a ×
−→
b ×−→c is a vector perpendicular to −→a ,

−→
b and −→c .

Two (x1, x2, x3, x4) and (y1, y2, y3, y4) are orthogonal
if their dot product x1y1 + x2y2 + x3y3 + x4y4 is zero.



Property 2.

2. The length of −→a ×
−→
b ×−→c is the area volume of

parallelogram parallelepiped determined by −→a ,
−→
b

and −→c .

Volume = hight times (area of the base)

= |−→a | cosα times |
−→
b ×−→c |

= |−→a | |
−→
b | |−→c | cosα sin θ

|−→a ×
−→
b ×−→c | = |−→a | |

−→
b | |−→c | cosα sin θ



Property 3.

If −→a ,
−→
b and −→c are colinear coplanar :

3. −→a ×
−→
b ×−→c =

−→
0 .

Use the formula

|−→a ×
−→
b ×−→c | = |−→a | |

−→
b | |−→c | cosα sin θ

The vectors are in the same plane iff α = 90◦ iff

|−→a ×
−→
b ×−→c |=volume =0 iff −→a ×

−→
b ×−→c =

−→
0 .



Generalize to higher dimensions

Get the wedge (or exterior) product. In higher dimensions
wedge ∧ is used instead of cross ×.

I Start with n − 1 n-dimensional vectors
−→ai = 〈ai1, ai2, . . . , ain〉, i = 1, . . . , n − 1.

I The result −→a1 ∧−→a2 ∧ . . . ∧−−→an−1 is an n-dimensional vector
with the i -th coordinate equal to:



If you took linear algebra...

Let −→e1 = (1, 0, . . . , 0), −→e2 = (0, 1, . . . , 0), ...
−→en = (0, 0, . . . , 1).

−→a1 ∧ −→a2 ∧ . . . ∧ −−→an−1 =

∣∣∣∣∣∣∣∣∣∣

−→e1
−→e2 . . . −→en

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
ai1 ai2 . . . ain

∣∣∣∣∣∣∣∣∣∣
=

the first row determinant expansion = A1
−→e1 +A2

−→e2 +. . .+An
−→en =

= (A1,A2, . . . ,An).



The three properties still hold

Property 1.

1. −→a1 ∧−→a2 ∧ . . .∧−−→an−1 is perpendicular to all of −→a1 , . . .
−−→an−1.

Note that

−→a1 · (−→a1 ∧ −→a2 ∧ . . . ∧ −−→an−1) =

∣∣∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
ai1 ai2 . . . ain

∣∣∣∣∣∣∣∣∣∣
= 0



Property 2

The generalization of a
parallelepiped
in n-dimensions is called an
n-parallelotope.

Property 2.
2. The length of −→a1 ∧ −→a2 ∧ . . . ∧ −−→an−1 is the volume of

n-parallelotope determined by −→a1 , ... −−→an−1.

V = |−→a1 ∧ −→a2 ∧ . . . ∧ −−→an−1|



Property 3

If −→a1 , ... −−→an−1 are coplanar in an n − 1-dimensional plane:

3. −→a1 ∧ −→a2 ∧ . . . ∧ −−→an−1 =
−→
0 .

1-dim. plane = line ax + by = c
2-dim. plane = plane ax + by + cz = d

... ...
n-dim. plane a1x1 + a2x2 + . . . + an+1xn+1 = b



In the same way you can...

1. Define n-dimensional
“surfaces” (called manifolds
then).

2. Define derivatives on
manifolds and tangent
n-plane at a point.

3. Define n-tuple integrals and
use to compute n-volumes.

...

In this case, you are doing differential geometry.
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is available on

http://www.usciences.edu/∼lvas.


