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Abstract

We prove that a finite von Neumann algebra A is semisimple if the algebra of
affiliated operators U of A is semisimple. When A is not semisimple, we give the
upper and lower bounds for the global dimensions of A and U . This last result
requires the use of the Continuum Hypothesis.
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1 Introduction

A finite von Neumann algebra A comes equipped with a faithful and normal
trace that enables us to define the dimension not just of a finitely generated
projective module over A but also of any A-module. This property makes A
an interesting algebra and creates the possibilities for various applications.
For applications of group von Neumann algebras in geometry and algebra, see
[10].

The algebra A has some nice ring theoretic properties. It mimics the ring Z
in such a way that every finitely generated module is a direct sum of a torsion
and torsion-free part. The dimension faithfully measures the torsion-free part
and vanishes on the torsion part. Although not without zero-divisors and, as
we are going to see, rarely Noetherian, a finite von Neumann algebra is Z-like:
it is semihereditary (i.e., every finitely generated submodule of a projective
module is projective) and has the classical quotient ring, constructed in the
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same way as Q is constructed from Z. The classical ring of quotients U of A
can be defined solely within the operator theory as the algebra of affiliated
operators. Although U has many nice properties as a ring, it is not necessarily
semisimple (Artinian and with trivial Jacobson radical) like Q is.

Let us consider the conditions.

(1) U is semisimple.
(2) A is ∗-isomorphic to the finite sum of algebras of mi × mi matrices over

L∞(ni), mi > 0, ni ≥ 0, i = 1, . . . , k for some k > 0.
(3) A is isomorphic to the finite sum of rings of mi × mi matrices over Cni ,

mi > 0, ni ≥ 0, i = 1, . . . , k for some k > 0.
(4) A is semisimple.
(5) A has finite C-dimension.

It is well known that the conditions (2) – (5) are equivalent. Also, it is not
hard to see that conditions (2) – (5) imply (1). Here, we shall prove that (1)
implies the rest of the conditions (Theorem 4).

If a ring is not semisimple, its global dimension measures how close it is to
being semisimple. The bounds for global dimension of U and A will be given
in the infinite dimensional case. This result uses the Continuum Hypothesis
(CH). Namely, in Theorem 8, we shall show:

(1) (CH) If dimCA = ℵ1 then gl.dimU = 2 and 2 ≤ gl.dimA ≤ 3.
(2) (CH) If dimCA = ℵn, n > 0, then 2 ≤ gl.dimU ≤ n + 1 and 2 ≤

gl.dimA ≤ n + 2.

The paper is organized as follows. In Sections 2 and 3, we list some results on a
finite von Neumann algebra and its algebra of affiliated operators. In Sections
4 and 5, we list the preliminary facts and results that we need. In Section 6,
we prove the result on the semisimplicity. In Section 7, we give the upper and
lower bounds for the global dimension of non-semisimple A and U .

The paper is written to be accessible both to an algebraist and an operator
theorist, so sometimes even well known results from the fields are referenced
for the sake of readability.

2 Finite von Neumann Algebras

Let H be a Hilbert space and B(H) be the algebra of bounded operators on H.
The space B(H) is equipped with five different topologies: norm, strong, ultra-
strong, weak and ultraweak. The statements that a ∗-closed unital subalgebra
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A of B(H) is closed in weak, strong, ultraweak and ultrastrong topologies are
equivalent. For details see [4] or [7] (Theorem 5.3.1).

A von Neumann algebra A is a ∗-closed unital subalgebra of B(H) which
is closed with respect to weak (equivalently strong, ultraweak, ultrastrong)
operator topology.

A ∗-closed unital subalgebra A of B(H) is a von Neumann algebra if and only
if A = A′′ where A′ is the commutant of A. The proof can be found in [7]
(Theorem 5.3.1).

Let Z(A) denotes the center of A. A von Neumann algebra A is finite if there
is a linear function trA : A → Z(A) called center-valued (or universal) trace
uniquely determined by the properties that

(1) trA(ab) = trA(ba).
(2) trA(a∗a) ≥ 0.
(3) trA is normal: it is continuous with respect to ultraweak topology.
(4) trA is faithful: trA(a) = 0 for some a ≥ 0 (i.e. a = bb∗ for some b ∈ A)

implies a = 0.

The trace function extends to matrices over A in a natural way: the trace
of a matrix is the sum of the traces of the elements on the main diagonal.
This provides us with a way of defining a convenient notion of, not necessarily
integer valued, dimension of any module.

If P is a finitely generated projectiveA-module, there exist n and f : An → An

such that f = f 2 = f ∗ and the image of f is P. Then, the dimension of P is

dimA(P ) = trA(f).

For details see [13]. The center-valued dimension was also studied in [10].

If M is any A-module, the dimension dimA(M) is defined as

dimA(M) = sup{dimA(P )| P fin. gen. projective submodule of M}

where the supremum on the right side is an element of Z(A) if it exists and
is a new symbol ∞ otherwise. We define a +∞ =∞+ a =∞ =∞+∞ and
a ≤ ∞ for every a ∈ Z(A).

The dimension satisfies the following properties.

(1) If 0 → M0 → M1 → M2 → 0 is a short exact sequence of A-modules,
then dimA(M1) = dimA(M0) + dimA(M2).

(2) If M is a finitely generated projective module, then dimA(M) = 0 if and
only if M = 0.
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The proof can be found in [13]. Part (1) follows from the first part of Propo-
sition 13 in [13]. Part (2) follows from Theorem 17 in [13] (Additivity). For
more properties of dimension, see [10] or [13].

As a ring, a finite von Neumann algebra A is semihereditary (i.e., every finitely
generated submodule of a projective module is projective or, equivalently,
every finitely generated ideal is projective). This follows from two facts. First,
every von Neumann algebra is an AW ∗-algebra and, hence, a Rickart C∗-
algebra (see Chapter 1.4 in [3]). Second, a C∗-algebra is semihereditary as a
ring if and only if it is Rickart (see Corollary 3.7 in [1]). The fact that A is
Rickart also gives us that A is nonsingular (see 7.6 (8) and 7.48 in [9]).

Note also that every statement about left ideals over A can be converted to
an analogous statement about right ideals. This is the case because A is a ring
with involution (which gives a bijection between the lattices of left and right
ideals and which maps a left ideal generated by a projection to a right ideal
generated by the same projection).

3 Algebras of Affiliated Operators

A finite von Neumann algebra A is a pre-Hilbert space. Let l2(A) denote
the Hilbert space completion of A. A can be identified with the set of A-
equivariant bounded operators on l2(A), B(l2(A))A, using the right regular
representations (see section 9.1.4 in [10] for details).

Let a be a linear map a : dom a → l2(A), dom a ⊆ l2(A). We say that a is
affiliated to A if

i) a is densely defined (the domain dom a is a dense subset of l2(A));
ii) a is closed (the graph of a is closed in l2(A)⊕ l2(A));
iii) ba = ab for every b in the commutant of A.

Let U = U(A) denote the algebra of operators affiliated to A.

Proposition 1 Let A be a finite von Neumann algebra and U = U(A) its
algebra of affiliated operators.

(1) A is an Ore ring and U is the classical ring of quotients Qcl(A) of A.
(2) U is a von Neumann regular (fin. gen. submodule of fin. gen.projective

module is a direct summand), left and right self-injective ring equal to the
maximal ring of quotients Qmax(A).

(3) U is the injective envelope E(A) of A.
(4) The set of projections (idempotents) in U is the same as the set of pro-

jections (idempotents) in A.
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The proof of 1. can be found in [10] (Theorem 8.22). The proof of 2. is in [2]
(Lemma 1, Theorem 2, Theorem 3). 3. follows from Theorem 13.36 in [9] (note
that A is nonsingular). 4. follows from Theorem 1 in Section 48 and Corollary
1 in Section 49 from [3]. For a review of the ring theoretic notions of Ore
ring, classical and maximal ring of quotients, self-injective ring and injective
envelope see [9].

From this proposition it follows that the algebra U can be defined using purely
algebraic terms (ring of quotient, injective envelope) on one hand and using
just the language of operator theory (affiliated operators) on the other.

K0(A) and K0(U) are isomorphic. The isomorphism µ : K0(A) ∼= K0(U)
is induced by the map Proj(A) → Proj(U) given by [P ] 7→ [U ⊗A P ] for
any finitely generated projective module P (Theorem 8.22 in [10]). In [12]
(Theorem 5.2) the explicit description of the map Proj(U) → Proj(A) that
induces the inverse of the isomorphism µ is obtained. Namely, the following
holds.

Theorem 2 There is an one-to-one correspondence between direct summands
of A and direct summands of U given by I 7→ U ⊗A I = E(I). The inverse
map is given by L 7→ L ∩ A. This correspondence induces an isomorphism of
monoids µ : Proj(A) → Proj(U) and an isomorphism µ : K0(A) → K0(U)
given by [P ] 7→ [U ⊗A P ] with the inverse [Q] 7→ [Q ∩ An] if Q is a direct
summand of Un.

For proof, see Theorem 5.2 in [12].

4 Algebraic Preliminaries

Let R be a ring with unit. Let Mn(R) denotes the ring of n× n matrices over
R.

4.1

Wedderburn-Artin Theorem asserts that a ring R is semisimple (Artinian with
trivial Jacobson radical) if and only if there are positive integers m and ni,
i = 1, . . . ,m and division rings Di, i = 1, . . . ,m such that R is isomorphic to
the product of matrix rings Mni

(Di), i = 1, . . . ,m. This result can be found
in most of the algebra textbooks (e.g. Theorem 3.3 in [5]).
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4.2

Morita Invariance Theorem asserts that K0(R) ∼= K0(Mn(R)) for every ring
R and every positive integer n (see, for example, [11], Theorem 1.2.4).

4.3

If R is a semisimple ring, K0(R) is a finitely generated abelian group. To
show this, let R be a semisimple ring. By Wedderburn-Artin Theorem, R
is isomorphic to

∏m
i=1 Mni

(Di) for some m > 0, ni > 0, i = 1, 2, . . . ,m and
division rings Di. Then

K0(R) ∼= K0(
m∏

i=1

Mni
(Di)) ∼=

m⊕
i=1

K0(Mni
(Di)) ∼=

m⊕
i=1

K0(Di) ∼= Zm.

For details see 1.2.8 and 1.1.6 in [11].

4.4

A ring R with unit is semisimple if and only if R is a direct sum of minimal
left ideals of the form Rei, i = 1, . . . ,m where e1, e2, . . . em are orthogonal
idempotents with e1 + e2 + . . . + em = 1. This result can be found in various
algebra textbooks (e.g. Theorem 3.7 in [5]).

Note that if A is a finite von Neumann algebra A, p a projection of A and
the left ideal Ap is minimal, then p is a minimal projection. This is because
for the projections p, q ∈ A, p = q if and only if Ap = Aq (as in any ring with
involution). Since U does not have any new projections (part (4) of Proposition
1), the same holds for U : if the left ideal Up is minimal, then p is a minimal
projection.

Also note that if e is an idempotent in A, then there is a projection p such
that Ae = Ap. This is true for every Rickart ∗-ring (see, for example, section
3 in [3]) so it holds for A. Since the algebra of affiliated operators U is also
Rickart, the same holds for U and an idempotent e ∈ U . In that case, note
that p is in A (part (4) of Proposition 1).
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4.5

If R is a ring with unit, then R is semisimple if and only if the ring of n×n R-
matrices Mn(R) is semisimple. This follows from the following two well known
facts. First, R is Artinian if and only if Mn(R) is Artinian (Exercise 5 in 8.1
of [5]). Second, J(Mn(R)) = Mn(J(R)), where J(R) denotes the Jacobson
radical of the ring R (Exercise 13 in 9.2 of [5]).

Also, a product of rings
∏n

i=1 Ri is semisimple if and only if each Ri, i = 1, . . . , n
is semisimple (see Theorem 2.17 in 9.2 and Corollary 1.6 in 8.1 in [5]).

4.6

If E(R) is an injective envelope of a ring R, it is easy to see that Mn(E(R))
is an injective Mn(R)-module which is an essential extension of Mn(R). Thus,
Mn(E(R)) = E(Mn(R)).

This gives us that U(Mn(A)) = Mn(U(A)) for a finite von Neumann algebra
A and its algebra of affiliated operators U = E(A).

5 Operator Theory Preliminaries

5.1

If A is a finite von Neumann algebra, A has a natural and unique decomposi-
tion as a direct sum of von Neumann algebras of types In for positive integers
n, and an algebra of type II1. For the definition of types of von Neumann
algebras and more details, see Section 6.5 in [8]. By definition of the type I1,
A is abelian if and only if A is of type I1.

5.2

If A is of type In, A is ∗-isomorphic to the algebra Mn(Z(A)) where Z(A) is
the center of A (Theorem 6.6.5. in [8]).
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5.3

If a finite von Neumann algebra is of type II1, the group K0(A) is isomorphic
to the group Z(A)Z2 = { a ∈ Z(A) | a = a∗ }, the subgroup of Z2-invariants
of Z(A) with the action of Z2 by involution. This follows from the proof of
Theorem 8.4.4. in [8]. Also, see Theorem 9.13. in [10].

As a consequence of this, K0(A) of a nontrivial von Neumann algebra of type
II1 is not finitely generated. Indeed, if A is nontrivial, the group Z(A)Z2 is
nontrivial as well. If nontrivial, the group Z(A)Z2 contains a copy of R because
it contains all the projections of the form r1 where r ∈ R and 1 is the unit of
A.

5.4

If S is a compact space and µ a finite measure on the Borel algebra of S,
we use the standard notation L2(S, µ) and L∞(S, µ) in their usual sense. If
S is {1, 2, ..., n}, {1, 2, ...} = ℵ0 or [0, 1], the corresponding algebras are de-
noted by L∞(n), L∞(ℵ0) and L∞([0, 1]) respectfully. Note that the first one is
semisimple and finitely generated while the other two are not.

5.5

We use the term maximal abelian von Neumann algebra in its usual sense
(e.g. see [7]). Recall that every abelian von Neumann algebra is ∗-isomorphic
to a maximal abelian algebra. For the proof of this see section 9.4. in [8] or
section I 7 in [4].

Every two ∗-isomorphic maximal abelian von Neumann algebras are unitarily
equivalent. Moreover, the Hilbert spaces on which these two algebras act are
isomorphic (Theorem 9.3.1. [8]).

5.6

Theorem 9.4.1. from [8], asserts that every maximal abelian von Neumann
algebra that acts on a separable Hilbert space is unitarily equivalent to exactly
one of the algebras L∞(n), L∞(ℵ0), L∞([0, 1]), L∞(n)⊕L∞([0, 1]) or L∞(ℵ0)⊕
L∞([0, 1]).
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6 Semisimplicity

For the main result, we need the following lemma.

Lemma 3 If A is an abelian von Neumann algebra such that the algebra of
affiliated operators U is semisimple, then A is finite dimensional.

PROOF. Let A be an abelian von Neumann algebra with semisimple U .
There are orthogonal idempotents ei, i = 1, 2, . . . , n, such that the left ide-
als Uei are minimal i = 1, 2, . . . , n,

∑n
i=1 ei = 1 and U =

⊕n
i=1 Uei by 4.4.

There are projections pi ∈ A, such that Uei = Upi, i = 1, 2, . . . , n (4.4). The
projections pi, i = 1, 2, . . . , n, are minimal projections since the ideals Upi,
i = 1, 2, . . . , n, are minimal (4.4).

Api is a direct summand of A and so Api = A∩ (U ⊗AApi) (by Theorem 2).
But U ⊗A Api = Upi and so Api = A ∩ Upi.

If j 6= i, then Api ∩ Apj = A ∩ (Upi ∩ Upj) = A ∩ (Uei ∩ Uej) = 0 and so⊕n
i=1Api ⊆ A. Moreover,

A = A(
n∑

i=1

ei) ⊆
n∑

i=1

Aei ⊆
n∑

i=1

A ∩ Uei =
n∑

i=1

A ∩ Upi =
n∑

i=1

Api =
n⊕

i=1

Api.

The spaces Api, i = 1, 2, . . . , n, are one-dimensional so A is finite dimensional.

Theorem 4 Let A be a finite von Neumann algebra with the algebra of affil-
iated operators U . The following are equivalent:

(1) U is semisimple.
(2) A is ∗-isomorphic to the finite sum of algebras of mi ×mi matrices over

L∞(ni), mi > 0, ni ≥ 0, i = 1, . . . , k for some k > 0.
(3) A is isomorphic to the finite sum of rings of mi ×mi matrices over Cni ,

mi > 0, ni ≥ 0, i = 1, . . . , k for some k > 0.
(4) A is semisimple.
(5) A has finite C-dimension.

It is well known that the conditions (2) – (5) are equivalent. Also, it is not
hard to see that conditions (2) – (5) imply (1). The main result here is that
(1) implies the rest of the conditions.

PROOF. (1) ⇒ (2). Let U be semisimple. Then K0(U) is finitely generated
by 4.3. Since K0(U) ∼= K0(A) (Theorem 2), K0(A) is finitely generated as well.
Hence, A has no summand of type II1 and has just finitely many summands
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Imi
, mi > 0, i = 1, . . . , k by 5.1 and 5.3. Let us denote these summands by

Ami
. For each i, Ami

is ∗-isomorphic to the algebra Mmi
(Z(Ami

)) by 5.2.
Note that K0(Z(Ami

)) = K0(Ami
) by 4.2 and U(Ami

) = U(Mm(Z(Ami
))) =

Mm(U(Z(Ami
))) by 4.6. By 4.5, U(Z(Ami

)) is semisimple. Thus, Z(Ami
) is

finite dimensional by Lemma 3.

Z(Ami
) is ∗-isomorphic to a maximal abelian algebra by 5.5. As Z(Ami

) is
finite dimensional, it is ∗-isomorphic to L∞(ni) for some nonnegative integer
ni by 5.6. Thus, Ami

is ∗-isomorphic to the algebra of mi ×mi matrices over
L∞(ni).

(2)⇒ (3). L∞(n) is isomorphic to Cn as rings.

(3)⇒ (4). If A ∼= Mm(Cn), for integers m > 0 and n ≥ 0, then A is semisimple
by 4.1 and 4.5.

(4)⇒ (1). If A is semisimple, then A is self-injective and, hence, equal to its
injective envelope U . Thus, U = A is also semisimple.

(5) ⇒ (4). If A has finite C-dimension, then A is ∗-isomorphic to the direct
sum of finitely many algebras of the form Mni

(C), i = 1, . . . , k. This follows
from Proposition 6.6.6, Theorem 6.6.1 and comments preceding Proposition
6.6.6 from [8] Thus, A is semisimple by 4.1.

(2)⇒ (5) is clear.

Clearly, A is abelian if and only if m = 1 in (2) and (3).

Corollary 5 Let A be a finite von Neumann algebra with the algebra of affil-
iated operators U . The following conditions are equivalent to conditions (1) –
(4) from Theorem 4:

(6) A is Noetherian (every ideal is finitely generated).
(7) U is Noetherian.
(8) A is hereditary (every ideal is projective).
(9) U is hereditary.

(10) A has finite universal dimension (every direct sum of nonzero submodules
contained in A is finite).

(11) U has finite universal dimension.

Note that the only nontrivial part is that (8) implies any of the other condi-
tions.

PROOF. Clearly, (1) implies (7), (9) and (11), and (4) implies (6), (8), and
(10). Since (1) and (4) are equivalent, to show the equivalence of all of the
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conditions, it is sufficient to prove that each of the conditions (6) – (11) implies
(1). We shall show (6)⇒ (7)⇒ (1), (8)⇒ (9)⇒ (1) and (11)⇔ (10)⇒ (1).

(6) ⇒ (7) ⇒ (1). The classical ring of quotients of an Ore and Noetherian
ring is Noetherian (Proposition 10.32 (6) in [9]). Since U = Qcl(A) and A is
Ore, (6) ⇒ (7). A von Neumann regular and Noetherian ring is semisimple
(Corollary 5.60 and Example 5.62a in [9]). Thus, (7)⇒ (1).

(8)⇒ (9)⇒ (1). A self-injective and hereditary ring is semisimple (Theorem
7.52 in [9]). Since U is self-injective, (9) ⇒ (1). We shall show (8) ⇒ (9), in
two steps. First, we show that for every ideal J of U , J = U ⊗A (J ∩ A).
Second, we show that if A is hereditary, U ⊗A (J ∩A) is projective. This will
give us that every ideal J of U is projective.

Let J be an ideal of U . Consider first the case when J is finitely generated.
Since U is semihereditary, J is (finitely generated and) projective. Thus, there
is a positive integer n such that J is a direct summand of Un. U is self-injective,
so J is a direct summand of an injective module and therefore J is injective.
So, the inclusion J ↪→ U splits, so J is a direct summand of U . Then, Theorem
2 gives us that J = U ⊗A (J ∩ A).

If J is any ideal of U , J is the directed union of its finitely generated submod-
ules Ji (directed with respect to the inclusion maps). Then,

U ⊗A (J ∩ A)) = U ⊗A ((lim−→ Ji) ∩ A)) = U ⊗A lim−→(Ji ∩ A)) =

= lim−→U ⊗A (Ji ∩ A)) = lim−→ Ji = J.

Now, let us show that U ⊗A (J ∩ A)) = J is projective for A hereditary. If
A is hereditary, the module J ∩ A is projective and so a direct summand of
some free module

⊕A. But then, U ⊗A (J ∩A)) is a direct summand of
⊕U

and so, projective. This gives us that every ideal of U is projective, so U is
hereditary.

(11) ⇔ (10) ⇒ (1). If a ring R is Ore, the uniform dimension of R is equal
to the uniform dimension of Qcl(R) (Corollary 10.35 in [9]). Thus, (10) ⇔
(11). If a nonsingular ring R has finite universal dimension, then Qmax(R) is
semisimple (Theorem 13.40 in [9]). Since A is nonsingular and U = Qmax(A),
(10)⇒ (1) follows.
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7 Global dimensions of U and A

In this section, we shall examine the global dimension of rings U and A. The
global dimension of a ring measures how close the modules over that ring are
to being projective, therefore how close the ring is to being semisimple. The
bounds for global dimension of U and A will be given.

The global dimension of a ring R is defined via the projective dimension of a
left R-module M

pdR(M) = min{ n |M has a projective resolution of length n }.

If this minimum does not exist, we define pdR(M) to be ∞. Clearly, a left
module M is projective if and only if pd(M)=0.

The left global dimension of a ring R is

l.gl. dim R = sup{ pdR(M) |M is a left R-module }.

The left global dimension can be computed using ideals solely:

l.gl.dimR = sup{ pd(R/I) | I is a left R-ideal }.

See Corollary 5.51 in [9] for details.

The right global dimension is defined similarly. If left and right global dimen-
sions of a ring are equal, we write just gl.dimR for l.gl.dim R = r.gl.dim R.
This is the case for A and U since they are rings with involution so every
statement about left ideals can be converted to an analogous statement about
right ideals.

Clearly, a ring R is semisimple iff r.gl.dim R = 0 iff l.gl.dim R = 0. Also, R is
left hereditary (every submodule of a projective left module is projective) if
and only if l.gl.dim R ≤ 1.

We have seen that gl.dimU = 0 just if A is finite dimensional. Suppose that
gl.dimU = 1. Then, U is hereditary. But every self-injective and hereditary
ring is semisimple (we already used this in (9) ⇒ (1) of Corollary 5), so
gl.dimU = 0. So, if A is infinite dimensional, the global dimension of U is at
least 2.

Tor functor defines another dimension of a ring. For review of Let R be a ring
and M a left R-module. The weak dimension of M is

wd(M) = sup{ n | TorR
n ( , M) 6= 0 }.

12



Clearly, M is a flat left module if and only if wd (M) = 0. If M is a right
module, we can define its weak dimension as the supremum of dimensions
n of nonvanishing TorR

n (M, ). It can be shown that the supremum of weak
dimensions of left modules is the same as the supremum of weak dimensions
of right modules and that is the same as sup{ n | TorR

n ( , ) 6= 0 } so, we can
define the weak global dimension of R as

wdR = sup{ n | TorR
n ( , ) 6= 0 }.

Since this definition is left-right symmetric, we do not have to distinguish left
and right weak global dimension. For more details, see section 5D in [9].

A ring R is von Neumann regular if and only if all modules are flat (Theorem
4.21, [9]). Thus, R is von Neumann regular if and only if wd R = 0. So,

wdU = 0.

For any ring R, wd R ≤ 1 if and only if a submodule of a flat module is flat.
Since all semihereditary rings have this property (see Theorem 4.67 in [9]),

wdA ≤ 1.

There are von Neumann algebras with weak global dimension 1 (Example 2.9
in [10]).

The following theorem of Jensen (Theorem 5.2 in [6]) connects the global
dimension of a ring with its cardinality and its weak global dimension. Recall
that ℵ0 denotes the first infinite cardinal, the cardinality of the set of integers.
Then, ℵn+1 is defined as the successor cardinal of ℵn, the least cardinal strictly
larger than ℵn.

Theorem 6 If R is a ring of cardinality ℵn, n ≥ 0, then

l.gl.dimR ≤ wdR + n + 1 and

r.gl.dimR ≤ wdR + n + 1.

If A is a finite von Neumann algebra, the cardinality of A is at least the
continuum c (the cardinality of C) sinceA contains a copy of the set of complex
numbers { z1A | z ∈ C } where 1A is the identity operator in A. Also, since
U = Qcl(A), A ⊆ U ⊆ A × A. The cardinality of A is the same as the
cardinality of A×A since both are infinite, so the cardinality of A and U are
the same.

Since wd U = 0 and wd A ≤ 1, the Theorem 6 gives us the following.
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Corollary 7 If A is a finite von Neumann algebra of cardinality ℵn, n > 0,
with the algebra of affiliated operators U , then

gl.dimU ≤ n + 1 and

gl.dimA ≤ n + 2.

If we were to use this result, we would like to identify the cardinality of A
as one of ℵ’s. Note that the case of ℵλ when lambda is not finite in Jensen’s
theorem is trivial.

If V is an infinite dimensional complex space, its cardinality and its dimension
over C are closely connected. Namely, if dimC V = λ, where λ is infinite, then
the cardinality of V is equal to the cardinality of finite subsets of the set C×λ.
This cardinality is the same as cardinality of C× λ. Since λ is infinite, this is
the maximum of the continuum c and λ.

Thus, using Corollary 7 for infinite dimensional A implies identifying the max-
imum of the dimension of A and the continuum c as one of the ℵ’s. That
requires the use of the Continuum Hypothesis (CH). Recall that CH states
that

c = ℵ1.

In the sequel, we shall emphasize the use of CH.

Theorem 8 Let A be a finite von Neumann algebra with the algebra of affil-
iated operators U , then

(1) dimCA < ℵ0 if and only if gl.dimU = gl.dimA = 0.
(2) (CH) If dimCA = ℵ1 then gl.dimU = 2 and 2 ≤ gl.dimA ≤ 3.
(3) (CH) If dimCA = ℵn, n > 0, then 2 ≤ gl.dimU ≤ n + 1 and 2 ≤

gl.dimA ≤ n + 2.

PROOF. (1) is proven in Theorem 4.

If dimCA = ℵ1 (note that dimCA cannot be ℵ0 as A is a Banach space) then
the cardinalities of A and U are both ℵ1. So, gl.dimU ≤ 2 by Corollary 7. If
gl.dimU ≤ 1, then U is hereditary and therefore semisimple (Corollary 5). But
then dimCA < ℵ0. Thus, gl.dimU = 2.

Similarly, gl.dimA ≤ 3 by Corollary 7. But gl.dimA ≤ 1 (A hereditary) is
equivalent with the conditions from Theorem 4 and Corollary 5 and implies
dimCA < ℵ0. So, gl.dimA ≥ 2.

14



(3) is proven analogously.

Let D denote the statement: if dimCA = ℵ1, then gl.dimU = 2. We have seen
that CH implies D. The following questions are open:

(1) Does D hold without assuming CH? If the answer is yes, the proof would
probably be very enlightening. If the answer is no, the next question will
be of great interest.

(2) Does D imply CH? In other words, is D equivalent with CH? If so, we
have another equivalent of CH in our hands.

(3) Can the bounds for global dimension of A and U be narrowed i.e. can
Theorem 8 be improved?

(4) What can we say about global dimensions of A and U if the C-dimension
of A is ℵλ with λ an infinite ordinal?
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