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Abstract. The dimension of any module over an algebra of affiliated oper-
ators U of a finite von Neumann algebra A is defined using a trace on A.
All zero-dimensional U-modules constitute the torsion class of torsion theory
(T,P). We show that every finitely generated U-module splits as the direct
sum of torsion and torsion-free part. Moreover, we prove that the theory (T,P)
coincides with the theory of bounded and unbounded modules and also with
the Lambek and Goldie torsion theories. Lastly, we use the introduced torsion
theories to give the necessary and sufficient conditions for U to be semisimple.

1. Introduction

A finite von Neumann algebra proves to be an interesting structure both for
operator theorists and for those working in geometry or algebraic K-theory. One of
the reasons is that a finite von Neumann algebra A comes equipped with a normal
and faithful trace that enables us to define the dimension not just of a finitely
generated projective module over A but also of arbitrary A-module.

Moreover, A mimics the ring Z in such a way that every finitely generated
module is a direct sum of a torsion and torsion-free part. The dimension faithfully
measures the torsion-free part and vanishes on the torsion part. A has nice ring-
theoretic properties: it is semihereditary (i.e., every finitely generated submodule of
a projective module is projective) and an Ore ring. The fact that A is an Ore ring
allows us to define the classical ring of quotients denoted U . Besides this algebraic
definition, it turns out that, within the operator theory, U can be defined as the
algebra of affiliated operators.

Using the dimension over A, we can define the dimension over U with the same
properties as the dimension over A. As a ring, U keeps all the properties of the ring
A and possesses some additional properties that A does not necessarily have. In
the analogy that A is like Z, U plays the role of Q. In Section 2, we define a finite
von Neumann algebra A, the dimension of A-module and the algebra of affiliated
operators of A, and list some results on these notions that we shall use further on.

Every finitely generated module over a finite von Neumann algebra A is a direct
sum of a torsion and a torsion-free module. However, it turns out that there exists
more than just one suitable candidate when it comes to defining torsion and torsion-
free modules. To overcome this problem, the notion of a torsion theory of a ring
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comes in as a good framework for the better understanding of the structure of A-
modules. In Section 3, we define a torsion theory for any ring and some related
notions. We introduce some torsion theories for a finite von Neumann algebra A:
Lambek, Goldie, classical torsion theory, the torsion theory (T,P) (studied also in
[11], [12], [17], [14] for finitely generated modules and in [16] for group von Neumann
algebras) in which a module is torsion if its A-dimension is zero and, finally, the
torsion theory (b,u) of bounded and unbounded modules.

In Section 4, we study the torsion theories for U . Since the dimension of a U-
module can be defined via the dimension over A, we can define the torsion theory
(T,P) in the same way as for A. If M is a finitely generated U-module, we show
that the short exact sequence

0 → TM → M → PM → 0

splits just as for finitely generated A-modules (Proposition 4.1). Then we show
(Theorem 4.1) that, for U ,

(T,P) = Lambek torsion theory = Goldie torsion theory = (b,u).

This indicates that, in contrast to the situation with A, there is only one nontrivial
torsion theory of interest for U .

Thus, one can work with U instead of A if one is not interested in the information
that gets lost by the transfer from A to U (faithfully measured by the Novikov-
Shubin invariant, see [13]). For applications to topology, see section 4 in [14] or
chapter 8 in [13] for details.

The passage from A to U mimics in many ways the passage from a principal
ideal domain to its quotient field. However, although U has many nice properties
as a ring, it is not necessarily semisimple. Any infinite group gives us the group
von Neumann algebra with algebra of affiliated operators that is not semisimple
(see Exercise 9.11 in [13]). In Section 5, we use the introduced torsion theories to
give necessary and sufficient conditions for U to be semisimple (Theorem 5.1).

2. Finite von Neumann Algebras and the Algebras of Affiliated
operators

Let H be a Hilbert space and B(H) be the algebra of bounded operators on
H. The space B(H) is equipped with five different topologies: norm, strong, ultra-
strong, weak and ultraweak . The statements that a ∗-closed unital subalgebra A of
B(H) is closed in weak, strong, ultraweak and ultrastrong topologies are equivalent
(for details see [6]).

Definition 2.1. A von Neumann algebra A is a ∗-closed unital subalgebra of B(H)
which is closed with respect to weak (equivalently strong, ultraweak, ultrastrong)
operator topology.

A ∗-closed unital subalgebra A of B(H) is a von Neumann algebra if and only if
A = A′′ where A′ is the commutant of A. The proof can be found in [6].

Definition 2.2. A von Neumann algebra A is finite if there is a C-linear function
trA : A → C such that

(1) trA(ab) = trA(ba).
(2) trA(a∗a) ≥ 0. A C-linear function on A that satisfies 1. and 2. is called a

trace.
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(3) trA is normal: it is continuous with respect to ultraweak topology.
(4) trA is faithful: trA(a) = 0 for some a ≥ 0 (i.e. a = bb∗ for some b ∈ A)

implies a = 0.

A trace on a finite von Neumann algebra is not unique. A trace function extends
to matrices over A in a natural way: the trace of a matrix is the sum of the traces
of the elements on the main diagonal.

Example 2.1. Let G be a (discrete) group. The group ring CG is a pre-Hilbert
space with an inner product: 〈 ∑

g∈G agg,
∑

h∈G bhh 〉 =
∑

g∈G agbg.

Let l2(G) be the Hilbert space completion of CG. Then l2(G) is the set of square
summable complex valued functions over the group G.

The group von Neumann algebra NG is the space of G-equivariant bounded
operators from l2(G) to itself:

NG = { f ∈ B(l2(G)) | f(gx) = gf(x) for all g ∈ G and x ∈ l2(G) }.
CG embeds into B(l2(G)) by right regular representations. NG is a von Neumann

algebra for H = l2(G) since it is the weak closure of CG in B(l2(G)) so it is a ∗-
closed subalgebra of B(l2(G)) which is weakly closed (see Example 9.7 in [13] for
details). NG is finite as a von Neumann algebra since it has a normal, faithful
trace trA(f) = 〈f(1), 1〉.

The trace provides us with a way of defining a convenient notion of the dimension
of any module.

Definition 2.3. If P is a finitely generated projective A-module, there exist n and
f : An → An such that f = f2 = f∗ and the image of f is P. Then, the dimension
of P is

dimA(P ) = trA(f) ∈ [0,∞).

Here the map f∗ is defined by transposing and applying ∗ to each entry of the matrix
corresponding to f.

If M is any A-module, the dimension dimA(M) is defined as

dimA(M) = sup{dimA(P ) | P fin. gen. projective submodule of M} ∈ [0,∞].

The dimension of a finitely generated projective module P does not depend on
the choice of f and n from the definition above and depend only on the isomorphism
class of P. For more details, see comments following Assumption 6.2 on page 238
of [13] or remarks following the Definition 1.6 in [12].

The dimension of arbitrary module is also well defined by Theorem 0.6 from [12]
or, equivalently Theorem 6.5 and 6.7 from [13].

The dimension has the following properties.

Proposition 2.1. (1) If 0 → M0 → M1 → M2 → 0 is a short exact sequence
of A-modules, then dimA(M1) = dimA(M0) + dimA(M2).

(2) If M =
⊕

i∈I Mi, then dimA(M) =
∑

i∈I dimA(Mi).
(3) If M =

⋃
i∈I Mi is a directed union of submodules, then dimA(M) =

sup{ dimA(Mi) | i ∈ I }.
(4) If M is finitely generated projective, then dimA(M) = 0 iff M = 0.
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The proof of this proposition can be found in [12] or [13].
As a ring, a finite von Neumann algebra A is semihereditary (i.e., every finitely

generated submodule of a projective module is projective or, equivalently, every
finitely generated ideal is projective). This follows from two facts. First, every
von Neumann algebra is an AW ∗-algebra and, hence, a Rickart C∗-algebra (see
Chapter 1.4 in [3]). Second, a C∗-algebra is semihereditary as a ring if and only if
it is Rickart (see Corollary 3.7 in [1]). The fact that A is Rickart also gives us that
A is nonsingular (see 7.6 (8) and 7.48 in [10]).

Note also that every statement about left ideals over A can be converted to an
analogous statement about right ideals. This is the case because A is a ring with
involution (which gives a bijection between the lattices of left and right ideals and
which maps a left ideal generated by a projection to a right ideal generated by the
same projection).

2.1. The Algebra of Affiliated Operators. A finite von Neumann algebra is a
pre-Hilbert space with inner product 〈a, b〉 = trA(ab∗). Let l2(A) be the Hilbert
space completion of A. Note that in the group case l2(NG) is isomorphic to l2(G)
since they are both Hilbert space completions of NG (see section 9.1.4 in [13] for
details). Also, a finite von Neumann algebra A can be identified with the set
of A-equivariant bounded operators on l2(A), B(l2(A))A, using the right regular
representations. This justifies the definition of NG as G-equivariant operators in
B(l2(G)) since B(l2(NG))NG = B(l2(G))NG = B(l2(G))G = NG.

Definition 2.4. Let a be a linear map a : dom a → l2(A), dom a ⊆ l2(A). We say
that a is affiliated to A if

i) a is densely defined (the domain dom a is a dense subset of l2(A));
ii) a is closed (the graph of a is closed in l2(A)⊕ l2(A));
iii) ba = ab for every b in the commutant of A.

Let U = U(A) denote the algebra of operators affiliated to A.

Proposition 2.2. Let A be a finite von Neumann algebra and U its algebra of
affiliated operators.

(1) A is an Ore ring.
(2) U is equal to the classical ring of quotients Qcl(A) of A.
(3) U is a von Neumann regular, left and right self-injective ring.
(4) U is the maximal ring of quotients Qmax(A).

The proof of 1. and 2. can be found in [14]. The proof of 3. and 4. can be found
in [2].

From this proposition it follows that the algebra U can be defined using purely
algebraic terms (ring of quotient, injective envelope) on one hand and using just
the language of operator theory (affiliated operators) on the other.

The ring U has many nice properties thatA is missing: it is von Neumann regular
and self-injective; and it keeps all the properties that A has: it is semihereditary
and nonsingular.

Further, K0(A) and K0(U) are isomorphic. Namely, Handelman proved (Lemma
3.1 in [9]) that for every finite Rickart C∗-algebra R such that every matrix algebra
over R is also Rickart, the inclusion of R into a certain regular ring U(R) with the
same lattice of projections as R induces an isomorphism µ : K0(R) → K0(U(R)).
By Theorem 3.4 in [1], a matrix algebra over a Rickart C∗-algebra is a Rickart
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C∗-algebra. Thus, K0(R) is isomorphic to K0(U(R)) for every finite Rickart C∗-
algebra R. If A is a finite von Neumann algebra, the regular ring from Handelman’s
theorem can be identified with the maximal ring of quotients Qmax(A) (see [2]).
This gives us that the inclusion of a finite von Neumann algebra A in its algebra
of affiliated operators U induces the isomorphism

µ : K0(A) → K0(U).

In [16] it is shown that the inverse of this isomorphism is induced by the map
Proj(U) → Proj(A) given by [Q] 7→ [Q ∩ An] for any direct summand Q of Un.
Thus, the following holds.

Theorem 2.1. There is an one-to-one correspondence between direct summands
of A and direct summands of U given by I 7→ U ⊗A I = E(I). The inverse map
is given by L 7→ L ∩ A. This correspondence induces an isomorphism of monoids
µ : Proj(A) → Proj(U) and an isomorphism

µ : K0(A) → K0(U)

given by [P ] 7→ [U ⊗A P ] with the inverse [Q] 7→ [Q∩An] if Q is a direct summand
of Un.

In Chapter 4 of [16], this theorem was proved for a group von Neumann algebra
and in Chapter 7 of [16], it is shown that it holds for any finite von Neumann
algebra as well. In [17], this result is contained in Theorem 5.2.

In [14], the dimension of an U-module is defined using the dimension of an A-
module and the above isomorphism µ. The dimension over U of a finitely generated
projective U-module M is defined as

dimU (M) = dimA(µ−1(M)),

where dimA(µ−1(M)) denotes the dimension over A of any module in the inverse
image of the equivalence class [M ].

Just as for the ring A, we can extend the definition of the dimension to all
modules. If M is an U-module, define the dimension of M , dimU (M), as follows:

dimU (M) = sup{dimU (P ) | P is a fin. gen proj. submodule of M}.
The dimension over U is well defined. For details, see section 8.3 in [13] or section
3 in [14].

In [14], it is shown that the dimension over U has all the properties that the
dimension over A had, i.e. Proposition 2.1 holds for dimU as well. In addition, in
[14] it is shown that the following holds:

dimU (U ⊗A N) = dimA(N) for every A-module N.

In [18], it is shown that U allows the definition of another type of dimension. This
dimension is analogous to the cental-valued dimension over a finite von Neumann
algebra considered in [11]. For more details, see Section 4.2 of [18].

3. Torsion Theories

To study different ways of defining the torsion and torsion-free parts of modules
over A or U , we first introduce the general framework in which we shall be working
— the torsion theory.
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3.1. General Torsion Theories.

Definition 3.1. Let R be any ring. A torsion theory for R is a pair τ = (T ,F)
of classes of R-modules such that

i) HomR(T, F ) = 0, for all T ∈ T and F ∈ F .
ii) T and F are maximal classes having property i).

The modules in T are called τ -torsion modules (or torsion modules for τ) and
the modules in F are called τ -torsion-free modules (or torsion-free modules for τ).

If τ1 = (T1,F1) and τ2 = (T2,F2) are two torsion theories, we say that τ1 is
smaller than τ2 and write τ1 ≤ τ2 if and only if T1 ⊆ T2. Equivalently, τ1 ≤ τ2 iff
F1 ⊇ F2.

If C is a class of R-modules, then the torsion theory generated by C is the smallest
torsion theory (T ,F) such that C ⊆ T . The torsion theory cogenerated by C is the
largest torsion theory (T ,F) such that C ⊆ F .

Proposition 3.1. (1) If (T ,F) is a torsion theory, then the class T is closed
under quotients, direct sums and extensions and the class F is closed under
taking submodules, direct products and extensions.

(2) If C is a class of R-modules closed under quotients, direct sums and ex-
tensions, then it is a torsion class for a torsion theory (C,F) where F =
{ F | HomR(C, F ) = 0, for all C ∈ C }.

Dually, if C is a class of R-modules closed under submodules, direct
products and extensions, then it is a torsion-free class for a torsion theory
(T , C) where T = { T | HomR(T, C) = 0, for all C ∈ C }.

(3) Two classes of R-modules T and F constitute a torsion theory iff
i) T ∩ F = {0},
ii) T is closed under quotients,
iii) F is closed under submodules and
iv) For every module M there exists submodule N such that N ∈ T and

M/N ∈ F .

The proof of this proposition is straightforward by the definition of a torsion
theory. The details can be found in [4].

From this proposition it follows that every module M has a largest submodule
which belongs to T . We call it the torsion submodule of M and denote it TM . The
quotient M/TM is called the torsion-free quotient and we denote it FM.

A torsion theory τ = (T ,F) is hereditary if the class T is closed under taking
submodules. A torsion theory is hereditary if and only if the torsion-free class is
closed under formation of injective envelopes. Also, a torsion theory cogenerated by
a class of injective modules is hereditary and, conversely, every hereditary torsion
theory is cogenerated by some class of injective modules. The details can be found
in [7].

A torsion theory enables us to define the closure of a submodule in a module.

Definition 3.2. If M is an R-module and K a submodule of M, let us define the
closure clMT (K) of K in M with respect to the torsion theory (T ,F) by

clMT (K) = π−1(T (M/K)) where π is the natural projection M ³ M/K.

If it is clear in which module we are closing the submodule K, we suppress the
superscript M from clMT (K) and write just clT (K). If K is equal to its closure in
M, we say that K is closed submodule of M .
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The closure has the following properties.

Proposition 3.2. Let (T ,F) be a torsion theory on R, let M and N be R-modules
and K and L submodules of M . Then

(1) TM = clT (0).
(2) T (M/K) = clT (K)/K and F(M/K) ∼= M/clT (K).
(3) If K ⊂ L, then clT (K) ⊆ clT (L).
(4) K ⊂ clT (K) and clT (clT (K)) = clT (K).
(5) clT (K) is the smallest closed submodule of M containing K.

(6) If (T ,F) is hereditary, then clKT (K ∩ L) = K ∩ clMT (L). If (T ,F) is not
hereditary, just ⊆ holds in general.

(7) If (T1,F1) and (T2,F2) are two torsion theories, then (T1,F1) ≤ (T2,F2) if
and only if clT1(K) ⊆ clT2(K) for all K.

The proof follows directly from the definition of the closure.

3.2. Examples.

(1) The trivial torsion theory on ModR is the torsion theory (0,ModR).
(2) The improper torsion theory on ModR is the torsion theory (ModR, 0).
(3) The torsion theory cogenerated by the injective envelope E(R) of R is called

the Lambek torsion theory. We denote it τL. Since it is cogenerated by an
injective module, it is hereditary.

If the ring R is torsion-free in a torsion theory τ , we say that τ is faithful.
τL is faithful and it is the largest hereditary faithful torsion theory.

(4) The class of nonsingular modules over a ring R is closed under submodules,
extensions, products and injective envelopes. Thus, the class of all nonsin-
gular modules is a torsion-free class of a hereditary torsion theory. This
theory is called the Goldie torsion theory τG.

The Lambek theory is smaller than the Goldie theory. This is the case
since τG is larger than any hereditary torsion theory (see [4]). Moreover,
τL = τG if and only if R is a nonsingular ring (i.e. τG is faithful). Recall
that a finite von Neumann algebra is a nonsingular ring.

(5) If R is an Ore ring with the set of regular elements T (i.e., Tr∩Rt 6= 0, for
every t ∈ T and r ∈ R), we can define a hereditary torsion theory by the
condition that an R-module M is a torsion module iff for every m ∈ M ,
there is a nonzero t ∈ T such that tm = 0. This torsion theory is called the
classical torsion theory of an Ore ring.

This theory is faithful and so it is contained in τL.
(6) Let R be a subring of a ring S. Let us look at a collection T of R-modules M

such that S⊗R M = 0. This collection is closed under quotients, extensions
and direct sums. Moreover, if S is flat as an R-module, then T is closed
under submodules and, hence, defines a hereditary torsion theory. In this
case, denote the torsion theory by τS .

From the definition of τS it follows that the torsion submodule of a
module M in τS is the kernel of the natural map M → S ⊗R M, i.e.
TorR

1 (S/R, M). Thus, all flat modules are τS-torsion-free. Since R is flat,
τS is faithful, so τS ≤ τL.

If a ring R is Ore, then the classical ring of quotients Ql
cl(R) is a flat R-

module and the set { m ∈ M | rm = 0, for some nonzero-divisor r ∈ R }
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is equal to the kernel ker(M → Ql
cl(R) ⊗R M). Hence the torsion theory

τQl
cl(R) coincides with the classical torsion theory of R in this case.
Since U = Qcl(A) (see Proposition 2.2), U is a flat A-module and τU is

the classical torsion theory of A.
(7) All the torsion theories we introduced so far are hereditary. Let us introduce

a torsion theory that is not necessarily hereditary. Let (b,u) be the torsion
theory cogenerated by the ring R (thus this is the largest torsion theory in
which R is torsion-free). We call a module in b a bounded module and a
module in u an unbounded module.

Since (b,u) is cogenerated by R, the closure of a submodule K of an
R-module M is clMb (K) = { x ∈ M | f(x) = 0, for every f ∈ HomR(M, R)
such that K ⊆ ker f }.

The Lambek torsion theory τL is contained in the torsion theory (b,u)
because R is τL-torsion-free. There is another interesting relation between
τL and (b,u) torsion theory. Namely,

M is a τL-torsion if and only if every submodule of M is bounded.

This is a direct corollary of the fact that HomR(M, E(R)) = 0 if and only
if HomR(N, R) = 0, for all submodules N of M, which is an exercise in [5].
Also, it is easy to show that (b,u) = τL if and only if (b,u) is hereditary.

To summarize, for any ring R we have the following relationship for the torsion
theories:

Trivial ≤ τL ≤ τG ≤ (b,u) ≤ Improper.

If R is an Ore nonsingular ring, then

Trivial ≤ Classical = τQcl(R) ≤ τL = τG ≤ (b,u) ≤ Improper.

The last is the situation for our finite von Neumann algebra A as well as its algebra
of affiliated operators U . In the following, we shall examine the situation for A and
U in more details.

3.3. Torsion Theories for Finite von Neumann Algebras. Let us introduce
some theories for finite von Neumann algebras and compare them with the torsion
theories from previous chapter.

(1) We can define a hereditary torsion theory using the dimension of an A-
module. For an A-module M, define TM as the submodule generated by
all submodules of M of the dimension equal to zero. It is zero-dimensional
by property (3) of Proposition 2.1. So, TM is the largest submodule of M
of dimension zero. Let us denote the quotient M/TM by PM .

The class T = {M ∈ ModA|M = TM} is closed under submodules,
quotients, extensions and direct sums (Proposition 2.1). Thus, T defines
a hereditary torsion theory with torsion-free class equal to P = {M ∈
ModA|M = PM}.

From the definition of this torsion theory it follows that clT(K) is the
largest submodule of M with the same dimension as K for every submodule
K of an module M . Also, since A is semihereditary and a nontrivial finitely
generated projective module has nontrivial dimension, A is in P and so the
torsion theory (T,P) is faithful.
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(2) The second torsion theory of interest is (b,u), the largest torsion theory
in which the ring is torsion-free. Since A is torsion-free in (T,P), we have
that (T,P) ≤ (b,u).

In [12] it is shown that TM = bM for a finitely generated A-module M,
that PM is a finitely generated projective module and that M = PM⊕TM.
The proof can also be found in [13].

(3) Let (t,p) denote the classical torsion theory of A. Since U = Qcl(A),

tM = ker(M → U ⊗A M) = TorA1 (U/A,M)

for any A-module M (see Examples (5) and (6) in Subsection 3.2).
Let pM denote the torsion-free quotient M/tM. From example (6), it

follows that all flat modules are torsion-free. In [15], the torsion theory
from example (6) is studied. Since A is semihereditary and U = Qcl(A) =
Qmax(A) is von Neumann regular and A-flat, from Turnidge’s results in
[15], it follows that the converse holds as well: a torsion-free module is flat.
Hence, an A-module M is flat if and only if M is in p.

Various torsion theories for A are ordered as follows:
Trivial ≤ Classical = (t,p) ≤ τL = τG = (T,P) ≤ (b,u) ≤ Improper.

The proof of τL = τG = (T,P) can be found in Chapter 4 of [16] for the case
of group von Neumann algebras. The proof for the more general case of finite von
Neumann algebras is the same as for the group von Neumann algebras (see Chapter
7 of [16]). Alternatively, Proposition 4.2 in [17] contains this result. It is interesting
to note that this proposition shows that the torsion theory (T,P), defined via a
normal and faithful trace trA, is not dependent on the choice of such trace since
(T,P) coincides with the Lambek and Goldie theories.

The inequality (t,p) ≤ τL holds since A injects in U ⊗A A = U , so A is torsion-
free in (t,p) and τL is the largest hereditary theory in which A is torsion-free.

All of the above inequalities can be strict. For details, see [13] or [16].
If M is an A-module, there is a filtration:

0 ⊆ t︸ ︷︷ ︸
tM

M ⊆ T︸ ︷︷ ︸
TpM

M ⊆ M.︸ ︷︷ ︸
PM

This follows from the fact that the quotient TM/tM = pTM is isomorphic to the
module TpM. For details see Proposition 4.3 and comments following it in [17].

4. Torsion Theories for the Algebra of Affiliated Operators

Let us turn to the torsion theories of the algebra of affiliated operators U of a
finite von Neumann algebra A.

Since we have defined the dimension over U and it satisfies all the properties
given in Proposition 2.1, we can define the hereditary torsion theory (T,P) for
U in the same way as we did for A : the torsion submodule TM of a U -module
M is the greatest submodule of M with of dimension zero. PM is the quotient
M/TM. The class of all zero-dimensional modules T is closed under quotients,
submodules, extensions and direct sums by Proposition 2.1. Hence, (T,P) is a
hereditary torsion theory over U . (T,P) coincides with the torsion theory defined
via the dimension considered in [18]. For more details, see Corollary 24 and the
two paragraphs following it in [18].
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The second theory of interest is (b,u), the torsion theory cogenerated by the
ring itself. The Lambek torsion theory τL is cogenerated by the injective envelope
of the ring, but U is a self-injective ring, hence τL = (b,u). Further, since U is also
a nonsingular ring, τL = τG.
U has no finitely generated submodules of dimension zero because U is semi-

hereditary and the dimension of a projective module is zero only if the module is
trivial. Since the dimension of a module is the supremum of the dimensions of its
finitely generated submodules, U has no nontrivial submodules of dimension zero.
Thus U is in P so (T,P) is faithful. This yields

(T,P) ≤ τL = τG = (b,u).

We will show that (T,P) = (b,u). The proof consists of three steps. Lemma
4.1 tells us that clT = clb on submodules of a finitely generated projective module.
Proposition 4.1 tells us that clT = clb on submodules of a finitely generated module.
Proposition 4.1 will also tell us that a finitely generated U-module has the same
property as a finitely generated A-module: it is the direct sum of its T-submodule
and P-quotient. Theorem 4.1 will then tell us that T = b.

Let Lfg(Un) denote the lattice of finitely generated submodules of Un. Since U
is von Neumann regular, this lattice coincides with the lattice of direct summands
of Un. In [14] it is shown that this is a complete lattice in which the supremum
and infimum of two direct summands are their sum and intersection, respectively.
Note that the intersection of two finitely generated U-modules is finitely generated
since U is a coherent ring.

Lemma 4.1. Let P be a finitely projective U-module, and K a submodule of P .

clT(K) =
⋂ {Q ⊆ P | Q is finitely generated and K ⊆ Q}

= inf {Q ⊆ P | Q is finitely generated and K ⊆ Q}
= sup {Q ⊆ P | Q is finitely generated and Q ⊆ K} = clb(K)

clT(K) is finitely generated and projective, and clT(K) is a direct summand of P.

Note that the infimum and supremum in the lemma denote the operations in the
lattice Lfg(Un) for P a direct summand of Un. Since this lattice is complete, these
two modules are finitely generated and, hence, projective. The fact that clT(K) is
finitely generated projective will follow from the equality with these two modules.

Proof. Let I (I for infimum) denote the module inf{Q ⊆ P | Q is finitely generated
and K ⊆ Q}, S (S for supremum) denote sup{Q ⊆ P | Q is finitely generated and
Q ⊆ K} and Int (Int for intersection) denote the module

⋂{Q ⊆ P | Q is finitely
generated and K ⊆ Q}. The proof proceeds in five steps:

(1) S = Int;
(2) I = Int;
(3) S ⊆ clT(K);
(4) clT(K) ⊆ clb(K);
(5) clb(K) = S.

(1) and (3) are proven in [14].
(2) Int is finitely generated projective by 1. (since S is). So, Int is the largest

finitely generated projective module that is contained in all the modules Q ⊆ P
such that Q is finitely generated and K ⊆ Q. But that means that Int is the
infimum of the set {Q ⊆ P | Q is finitely generated and K ⊆ Q}. So, I = Int.
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(4) clT(K) ⊆ clb(K) follows since (T,P) ≤ (b,u).
(5) S ⊆ clb(K) by (3) and (4). We shall show the equality by showing that

clb(K)/S is trivial. Note that clb(K) is equal to the intersection of the submodules
ker f where f ∈ HomU (P,U) is such that K ⊆ ker f (by the definition of the torsion
theory (b,u)). The image of such a map f is finitely generated (since P is) and
projective (as a finitely generated submodule of U). But then 0 → ker f → P →
imf → 0 splits and so ker f is also finitely generated projective. Since the lattice of
finitely generated submodules of P is complemented (and the infimum is just the
intersection) clb(K) is finitely generated projective as well.

Since both clb(K) and S are finitely generated projective, clb(K)/S is finitely
presented. All modules over a von Neumann regular ring are flat and all finitely
presented flat modules are projective (Theorem 4.21, Theorem 4.30 in [10]). Thus,
a finitely presented module over a von Neumann regular ring is finitely generated
projective. So clb(K)/S is projective.

Since clb(K)/S = HomU (U , clb(K)/S) to show clb(K)/S = 0 it is sufficient to
show HomU (U , clb(K)/S) = 0. But in every von Neumann regular ring R, for two
projective modules P and Q the following holds:

HomR(P, Q) = 0 iff HomR(Q,P ) = 0

(this fact can be found in [8]). So, to show HomU (U , clb(K)/S) = 0, it is sufficient
to show HomU (clb(K)/S,U) = 0. Let f̃ be in HomU (clb(K)/S,U). It uniquely
determines a map f : clb(K) → U . Since U is self-injective, the map HomU (P,U) →
HomU (clb(K),U) is onto. So, we can extend f to f in HomU (P,U). Since K ⊆
ker f, K ⊆ ker f and so clb(K) ⊆ ker f. But that means that f |clb(K) = f :
clb(K) → U is 0, and so f̃ = 0 as well. Hence, HomU (clb(K)/S,U) = 0, which
finishes the proof of (5).

Since U is a self-injective ring, a finitely generated projective module is injective.
Thus, clT(K) is a direct summand of P since it is finitely generated projective and
a submodule of P. ¤

The next proposition will tell us that clT(K) = clb(K) for every submodule K
of a finitely generated U-module P.

Proposition 4.1. If M is a finitely generated U-module and K a submodule of M,
then

(1) clb(K) is a direct summand of M and M/clb(K) is finitely generated pro-
jective.

(2) dimU (K) = dimU (clb(K)).
(3) M = bM ⊕ uM and dimU (bM) = 0.
(4) TM = bM so M = TM ⊕ PM and PM = uM is a finitely generated

projective module.

Proof. (1) Choose a finitely generated projective module P and a surjection f :
P → M. By the previous lemma we know that the T-closure of a submodule in P
is the same as b-closure. We shall transfer the problem of dealing with submodules
of M to P where we know the claim is true by Lemma 4.1.

First, we shall show that clb(f−1(K)) = f−1(clb(K)).
Let x be in clb(f−1(K)). Then g(x) = 0, for every g ∈ HomU (P,U) such that

f−1(K) ⊆ ker g. We need to show that f(x) is in clb(K), i.e. that h(f(x)) = 0 for
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every h ∈ HomU (M,U) with K ⊆ kerh. Let h be one such map. Letting g = hf, we
obtain a map in HomU (P,U) such that g(f−1(K)) = hff−1(K) = h(K) (since f
is onto). But h(K) = 0, and so f−1(K) ⊆ ker g. Hence, g(x) = 0 i.e. h(f(x)) = 0.

To show the converse, let x be in f−1(clb(K)). Then h(f(x)) = 0 for every h
∈ HomU (M,U) such that K ⊆ kerh. We need to show that g(x) = 0 for every
g ∈ HomU (P,U) such that f−1(K) ⊆ ker g. Let g be one such map. Since f−1(0) ⊆
f−1(K) ⊆ ker g, we have ker f ⊆ ker g. This condition enables us to define a
homomorphism h : M → U such that h(f(p)) = g(p) for every p ∈ P. Then
h(K) = h(f(f−1(K))) = g(f−1(K)) = 0, and so h(f(x)) = 0. But this gives us
that g(x) = 0.

It is easy to see that f : P → M induces an isomorphism P/f−1(clb(K)) →
M/clb(K). But clb(f−1(K)) = f−1(clb(K)), so we obtain that M/clb(K) is fi-
nitely generated projective (since P/clb(f−1(K)) is). So 0 → clb(K) → M →
M/clb(K) → 0 splits.

(2) To show that dimU (K) = dimU (clb(K)), let us look at a surjection f : P →
M as in (1) and the following two short exact sequences:

0 → ker f → f−1(K) → K → 0,
0 → ker f → f−1(clb(K)) → clb(K) → 0

clb(f−1(K)) = clT(f−1(K)) by Lemma 4.1. The dimension of clT(f−1(K))
is the same as the dimension of f−1(K) by the definition of the closure and the
theory (T,P). Since clb(f−1(K)) = f−1(clb(K)), the two exact sequences give us
dimU (K) = dimU (clb(K)).

(3) Let K = 0 in (1) and (2).
(4) Since T ⊆ b we have that TM ⊆ bM. But, since dimU (bM) = 0 and TM

is the largest submodule of M with dimension zero, bM ⊆ TM. The rest of (4)
follows from (3) and (1). ¤

Now we can prove the following.

Theorem 4.1. For the ring U ,

(T,P) = Lambek torsion theory = Goldie torsion theory = (b,u).

Proof. Since we know that (T,P) ≤ τL = τG = (b,u), it is sufficient to show that
b ⊆ T. Proposition 4.1 gives us that bM = TM for every finitely generated M .
To finish the proof it suffices to show that every τL-torsion module is in T. Let
M be τL-torsion. Then all submodules of M are bounded (see Example (7) in
Section 3.2). So, all finitely generated submodules of M are bounded, and, hence
in T. Since the dimension of M is the supremum of the dimensions of its finitely
generated submodules, the dimension of M is zero. Hence, M is in T. ¤

In contrast to the situation (T,P) � (b,u) for the ring A, we have that (T,P) =
(b,u) for the ring U .

The ring U is Ore because every von Neumann regular ring is Ore, so the classical
ring of quotients exists. Also, U is semihereditary, so we have that U ⊆ Qcl(U) ⊆
Qmax(U) = E(U). But U is self-injective so E(U) = U . Hence, U = Qcl(U) =
Qmax(U) = E(U). So, the classical torsion theory of U is trivial. This indicates
that there is only one nontrivial torsion theory of the ring U of interest for us:
(T,P) = τL = τG = (b,u).
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This theory is neither trivial nor improper in general. Let NZ be the group
von Neumann algebra of the group Z and UZ its algebra of affiliated operators.
Example 8.34 in [13] gives us a flat NZ-module M with dimension zero. Since M is
flat, UZ⊗NZM is nontrivial. Since M has dimension zero, dimUZ(UZ⊗NZM) = 0,
and so UZ⊗NZ M is in T. Thus, (T,P) is not trivial for UZ.

The theory (T,P) is not improper whenever A (and hence U(A)) is nontrivial
since U(A) is a torsion-free module and, hence, not in T.

If one is not interested in the t-part of a module over a finite von Neumann
algebra A, one can work with U(A) instead of A. For applications to topology, that
means that we can work with algebra of affiliated operators if we are not interested
in Novikov-Shubin invariants. See section 4 in [14] for details about L2-invariants
via an algebra of affiliated operators.

5. Torsion Theories and Semisimplicity

In this section, we shall see that the vanishing of certain torsion theories is
equivalent with the semisimplicity of U . First we need the following result.

Lemma 5.1. Let n be any positive integer. For every submodule P of Un,

dimU (P ) = dimA(P ∩ An).

Proof. If P is finitely generated, then P = U ⊗A (P ∩ An) by Theorem 2.1 and so

dimU (P ) = dimU (U ⊗A (P ∩ An)) = dimA(P ∩ An).

If P is not finitely generated, write P as a directed union of its finitely generated
submodules Pi, i ∈ I. Then P ∩An is direct union of Pi ∩An, i ∈ I. Thus, we have

dimU (P ) = sup
i∈I

dimU (Pi) = sup
i∈I

dimA(Pi ∩ An) = dimA(P ∩ An).

¤

Now we can prove the result about the equivalence of the vanishing of certain
torsion theories and the semisimplicity of U .

Theorem 5.1. The following are equivalent:
(1) U is semisimple.
(2) (T,P) for U is trivial.
(3) (T,P) for A is equal to (t,p).
(4) The Tp-part of every A-module is zero.
(5) The Tp-part of every cyclic A-module is zero.

Proof. We shall show that (1) ⇒ (2) ⇒ (3) ⇔ (4) ⇒ (5) ⇒ (1).
(1) ⇒ (2). If U is semisimple, all U-modules are projective, and hence in P. So,

T = 0.
(2) ⇒ (3). Since t ⊆ T for A, it is sufficient to show that every module from

T is in t. If M is in T, then dimU (U ⊗A M) = dimA(M) = 0, so U ⊗A M =
0 by assumption that there are no nontrivial zero-dimensional U -modules. But
U ⊗A M = 0 means that M = tM, so M is in t.

(3) ⇔ (4). (3) is equivalent with (4) since TpM ∼= pTM = TM/tM .
(4) ⇒ (5). is trivial.
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(5) ⇒ (1). To show that U is semisimple, it is sufficient to show that every left
ideal in U is a direct summand. Let I be a left ideal in U . Then clT(I) is a direct
summand of U (by Proposition 4.1). We shall show that I is a direct summand by
showing that I = clT(I).

Since clT(I) is a direct summand of U , clT(I) ∩A is a direct summand of A by
Theorem 2.1. Denote by J the left ideal I ∩ A and by J the left ideal clT(I) ∩ A.
We shall show that J = clT(J).

Since I ⊆ clT(I), we have J ⊆ J. J is T-closed by Proposition 6.32 from [10]
and the fact that (T,P)= Goldie torsion theory for A. Since clT(J) is the smallest
closed submodule containing J we have that clT(J) ⊆ J. J/clT(J) is contained in
a finitely generated projective module A/clT(J). So, J/clT(J) is a module in P.
To show it is trivial, it is sufficient to show that its dimension vanishes. This is the
case since

dimA(clT(J)) = dimA(J) (Def. of T, clT and Prop. 2.1)
= dimA(I ∩ A) (definition of J)
= dimU (I) (by Lemma 5.1)
= dimU (clT(I)) (Def. of T, clT and Prop. 2.1 for U)
= dimA(clT(I) ∩ A) (by Lemma 5.1)
= dimA(J) (definition of J)

Thus, J = clT(J).
By Proposition 3.2, clT(J)/J = T(A/J) and A/clT(J) = P(A/J). P(A/J) is a

finitely generated projective module so the inclusion T(A/J) ↪→ A/J is split. So,
clT(J)/J = T(A/J) is cyclic. Its Tp-part is trivial by assumption, and so

0 = T(A/J)/t(A/J) ∼= clT(J)/clt(J).

Thus, clT(J)/J = clt(J)/J = t(A/J) is in t.
Since clT(J)/J is in t, U ⊗A clT(J)/J = 0 and, hence

U ⊗A clT(J) = U ⊗A J.

Thus,

clT(I) = U ⊗A (clT(I) ∩ A) (by Theorem 2.1)
= U ⊗A J (definition of J)
= U ⊗A clT(J) (since J = clT(J))
= U ⊗A J (by what we just showed)
= U ⊗A (I ∩ A) (definition of J)
⊆ I (I is a left ideal)

But, since I is contained in clT(I), we have that clT(I) = I. So, I is a direct
summand in U . Thus, U is semisimple. This finishes the proof. ¤

In view of the t − Tp − P filtration, the vanishing of the Tp-part of each A-
module is equivalent with U being semisimple. The vanishing of the t-part of every
module is equivalent with A = U . Indeed, U ⊗A U/A = 0 so U/A is in t. Hence, if
t = 0, U = A. The converse is easy: if U = A, then tM = TorA1 (U/A,M) = 0 for
every A-module M .

In the case when a finite von Neumann algebra of interest is a group von Neu-
mann algebra NG, the algebra of affiliated operators UG is semisimple if the group
G is finite. It is easy to see that for finite group G, UG = NG = CG and CG is
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semisimple. The converse also holds: finite G is the only case when UG is semisim-
ple. The proof of this claim can be found in [13] (see the solution of the exercise
9.11). Thus, Theorem 5.1 asserts that the Tp-part is present for a large class of
group von Neumann algebras.
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