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John von Neumann’s dream...

... to capture abstractly the concept of an algebra of
observables in quantum mechanics.

Non-commutative measure «~+ trace — dimension function.




Algebraization of Operator Theory

"Von Neumann algebras are blessed with an excess

of structure — algebraic, geometric, topological — so
much, that one can easily obscure, through proof by
overkill, what makes a particular theorem work."

"If all the functional analysis is stripped away ...
what remains should (be) completely accessible
through algebraic avenues”.

Berberian, S. K. Baer *-rings;
Springer-Verlag,
Berlin-Heidelberg-New York,
1972.




The overkill

The overkill that Berberian is referring to:

a mosquito a machine gun



What structure do we need?

» With + and - —

a ring.

» With an involution,

an additive map *
with (xy)* = y*x*
and (x*)" = x —

a *-ring.




Traditional candidate — a Baer *-ring

A (left) o of a set X = set of all elements a such
annihilator that ax — 0.
o = a self-adjoint (p* = p) idempotent
A projection (pp = p).
. = every annihilator is generated by a
A Baer x-ring projection.

So annihilator ~~ closed subspace.

Kaplansky’s dream: to axiomatize
(at least part of) the theory of VNAs.

Followed similar path as von
Neumann (looked at projections,
idempotents, annihilators) and ended
up defining Baer *-rings.




Examples and traces

Finite matrices B(H), dim(H) = n with the usual trace
Ma(C)

Infinite matrices | B(H), dim(H) = oo, usual trace, not finite

G-invariant operators on Hilbert space /?(G)
Group VNAs | i.e. f(xg) = f(x)g. Kaplansky trace on />(G)
N(G) tr(>_ agg) = a1 produces tr(f) = tr(f(1)).

First and thirds are examples of finite von Neumann
algebras. Finite means

] xx* =1 implies x*x=1. ‘




trg: A— C.

» A finite VNA A has a finite, normal and faithful trace

» The trace extends to matrices: tr([a;]) = >
[Liick] Trace — dimension.
1.

7:1 tr(a,-,-).
If Pis a fin. gen. proj.,

where f : A" — A" is a
projection with image P.
2. If M is any module,

€ [0, o0].
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What kind of rings have this type of dimension

2005 Baer *-rings satisfying certain nine eight ([2006]) axioms.
If R is such, then M,(R) is Baer for every n.

2012 Strongly semihereditary rings = every fin. gen.
nonsingular is projective.

If such R also has « = M,(R) is Baer for every n.
Examples: Finite AW*- algebras (AW* = C* + Baer).




Many ways to bridge the fields

Group Von Neumann algebras Group rings

AW*-algebras “n Baer *-rings

Graph C*-algebras «~  Leavitt Path Algebras




1. 1950s: Leavitt algebras as
examples of rings with
R™ = R".

2. 1970s: Cuntz's algebras —
C*-algebras defined by
analogous identities.

3. 1980s: Cuntz-Krieger
algebras — generalization of 2.

Recall: C* = complete normed and *-algebra,
- and x agree with || ||.
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Same analogy

Graph C*-algebra: The graph Leavitt path algebra:
encodes the structure — easy to no operator theory.
work with and classify. Axiomatic approach.
Encompasses many important

examples of C*-algebras.
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Graphs and paths

1. Start with a graph: vertices, edges, and source and range
e

7\

map, s and r s(e)® % (e)
2. Form paths, multiply them by concatenation.
p q
pq is e o e if r(p) =s(g) and 0 otherwise.

.. and consider ghost paths too.




Leavitt path and graph C*-algebras

Can also do this by axioms: s(c)e o'(e)
~_
V w=vand vw=0if v £ w, e
El e =s(e)e = er(e)
E2 e* = e*s(e) = r(e)e* Add two more.

CK1 e*e=r(e),and e'f =0if e # f
CK2 v=>"

K= field. The Leavitt path algebra Lx(E) of E is a free
K-algebra (on v, e and e*) satisfying these axioms.

If K= C. The graph C*-algebra C*(E) of E is the
completion of Lx(E). Universal C*-algebra with

1(v) €e” if v regular (0 < s7H(v)] < 00).

ecs™

vertices = generating projections

- : and CK1 and CK2.
edges = partial isometries



Some basic properties

1. Element in a Leavitt path algebra Lx(E)

Z kp,qpq*

p, q are paths, r(p) = r(q)
kpq € K

2. Lk(E) has involution *.

For involution k — k in K
(can always take it to be
identity), define

(3> kpq*)" =" kap*




Basic properties continued

3. If {vertices} is finite, Lx(E) is unital:

1=>" all vertices 1

4. If {vertices} is not finite, Lk (E) has local units:

for every x;,i = 1,...,n there is idempotent v,
Xiu = ux; = X;j.
(u is the sum of sources of paths in representation of x;)




Example 1

v._e).w
Paths: v, w,e. Representation:
L, 10 o 00 o 01
100 101 100

Path algebra: triangular 2x2 matrices T(K) = { KoK ]

0 K
Ghost edge e*. Representation:

o_f00

|10
. . K K
Leavitt path algebra: all 2x2 matrices M(K) = K K

Graph C*-algebra: all 2x2 matrices M,(C)



Example class 1 — Matrices

ue —° e —>e" Representation via 3x3 matrices.

Generalizes to n-line.

Path algebra: triangular nxn matrices
To(K)

Leavitt path algebra: all nxn matrices
Ma(K)

Graph C*-algebra: all nxn matrices
M,(C)




e

A

.V

Paths: v =1,e,e? e3.... Representation: e = x
Path algebra: Polynomials K|[x].

Ghost edge: e* = x7!

Leavitt path algebra: Laurent
polynomials K[x, x~1].

Graph C*-algebra: continuous
functions on a circle C(S?').




Example 3 — Rose

eC.VDf
Paths: v =1,e, f,ef,e? f2... Representation: e = x,

f =y Path algebra: K(x,y). Ghost edges e*, f*.

Leavitt path algebra: L(1,2) (universal R with R? & R).
Graph C*-algebra: Cuntz algebra O,.

Generalizes to n-rose. - e"

Path algebra: K[xi, ..., ).
Leavitt path algebra: L(1,n)

Graph C*-algebra: Cuntz algebra
O,




1. The usual trace on M,(K).

2. Kaplansky trace on K[x,x!]
tr(>° kax™) = ko.

DA



in the most general way.

Let R and T be rings. A

isamaptr: R— T whichis
» additive and

> central i.e. | tr(xy) = tr(yx) |
forall x,y € R

If R and T are K-algebras, we also want it to be

» K-linear i.e. tr(kx) = ktr(x)
forall x € R and k € K.

DA



Additional requirements if * is around

X in *-ring is positive (x > 0) if

x = finite sum of yy*.

Comes from complex conjugation:

(a+ib)(a—ib) =a*+b*>>0.

R, T x-rings, tr: R — T trace.
» tr is positive if x > 0 implies tr(x) > 0.
» tr is faithful if x > 0 implies tr(x) > 0.



It should all depend on the vertices...

... but not just any map on vertices agrees with CK2.

A central map tr | agrees with CK2 | iff

tr(v) = tr(z ee’) = Ztr(ee*) = Ztr(e*e) = Ztr(r(e))

for v regular with e € s71(v).

Example.

.1<—.3—>.1

This does not agree with CK2 since 3 £ 1 + 1.



Graph traces

Tomforde 2002. A graph trace is a
map t on the set of vertices such that

o | H(v) = Ty t(r(e)) [ for

I =s7*(v), and v regular.

It is

» positive if

(P) t(v) > > . t(r(e)) |forall v, and

finite / C s71(v).

» faithful if positive and | (F) t(v) > 0 |for all v.




Desirable properties

1. Graph traces <« Traces.

2. (P) < positive, (F) < faithful.

Both fail. The C-valued tr on
C[x,x7] (=LPA of a loop) given by

tr(x") =" tr(x=") = i"

has (P) and (F) but is not positive

S (1 X)(1 4 x1)) = 2421,

Also, the graph trace with tr(1) = 1 extends to a different
trace.



Fixing this — Canonical traces

tr = trace on Lx(E), p, g = paths.

tr is canonical if tr(“nondiagonal”) = 0 and
tr(“diagonal”) = tr(vertex).

tr(pqg*) = 0, for p # q and tr(pp*) = tr(r(p)).




Theorem [2016].

canonical trace on Lk(E)

«~  graph trace on E
canonical tr is positive <= (P) holds.
canonical tr is faithful <= (F) holds.




Instead of going over 6 pages of proof...

. let me tell you what my] driving force ‘Was.

1. Classification of von Neumann algebras via traces.

2. Results on traces of graph C*-algebras.



Connecting with the C*-algebra world

Theorem [Pask-Rennie, 2006]. E row-finite and countable.
All maps are C-valued.

faithful, semifinite,

lower semicontinuous

gauge-invariant faithful

trace on C*(E) e~s graph trace on E

semifinite = {x € C*(E)™| tr(x) < oo} is norm dense in
C*(E)".

lower semicontinuous = tr(lim, . a,) < liminf,_, . tr(a,)
for all a, € C*(E)* norm convergent.



Defined
Defined on the
. everywhere.
positive cone.
Central.

tr(xx*) = tr(x*x)

Faithful if
positive and

Faithful if

tr(xx*) =0 = x = 0. tr(Zxx*)=0:>Zxx*:0.



Connecting the worlds

Corollary [2016]. E countable.

semifinite,

lower semicont.,

faithful, faithful, faithful
gauge-invariant canonical

trace «~  trace «~  graph trace
on C*(E) on Lc(E) on E




Where to next with this?

My driving force:

A von Neumann algebra is finite
iff  there is a finite, normal, faithful trace.

| wandered:

A Leavitt path algebra Lk (E) is finite
iff  there is a K-valued canonical, faithful trace (7)
iff  the graph is

Recall that a *-ring is finite if

‘ xx* =1 implies x*x=1. ‘

Easy: the existence of a faithful trace implies finiteness.
xx*=1 = 1—-x"x>0andtr(l —xx*)=0so

tr(l —x"x)=tr(l —=xx") =0 = 1-xx=0 = x"x=1.



Houston, we have a problem

’ finite iff xx* =1 = x*x=1. ‘

What is “1” if E is not finite?

There are still local units: for
every finite set of elements, there
is an idempotent acting like a
unit.

A x-ring with local units R is if for every x and an
idempotent u with xu = ux = x,

* *

xx* =u implies x*x = u.

In this case u is a projection (selfadjoint idempotent).



LPAs is finite iff E has “no exits”

Fa cycl p has an exit N 0

then a LPA is

- EXIT

let x=p+w,andu=v+w.

Then ux = ux = x and x*x = u. If xx* = u, then pp* =v =
0 = pp*e = ve = e contradiction.

If v =w, take x = p, u = v and arrive to contradiction too.



Idea of “localizing”: more general than just for finiteness.

Lk (E) is finite

) )

E is no-exit <= E is no-exit and ?

z Lk (E) has a faithful trace

No exits here.

No trace since value of
tr(v) > ntr(w) for all n.




Localizing

http://liavas.net and arXiv.



