Algebraization of Operator Theory

Lia Vaš

University of the Sciences, Philadelphia, USA

Operator theory ... to capture abstractly the concept of an algebra of observables in quantum mechanics.

Non-commutative measure \iff trace \longrightarrow dimension function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Algebraization of Operator Theory

"Von Neumann algebras are blessed with an excess of structure – algebraic, geometric, topological – so much, that one can easily obscure, through proof by overkill, what makes a particular theorem work."

"If all the functional analysis is stripped away ... what remains should (be) completely accessible through algebraic avenues".

Berberian, S. K. Baer *-rings; Springer-Verlag, Berlin-Heidelberg-New York, 1972.

The overkill that Berberian is referring to:

a mosquito

a machine gun

What structure do we need?

With an involution,

an additive map * with $(xy)^* = y^*x^*$ and $(x^*)^* = x \longrightarrow$

Traditional candidate - a Baer *-ring

- of a set X = set of all elements a such that ax = 0.
- = a self-adjoint $(p^* = p)$ idempotent (pp = p).
- = every annihilator is generated by a projection.

So annihilator <---> closed subspace.

Kaplansky's dream: to axiomatize (at least part of) the theory of VNAs.

Followed similar path as von Neumann (looked at projections, idempotents, annihilators) and ended up defining <u>Baer *-rings.</u>

Finite matrices $M_n(\mathbb{C})$	$\mathcal{B}(H),\;\;$ dim $(H)=n\;$ with the usual trace
Infinite matrices	$\mathcal{B}(H), \;\; dim(H) = \infty, \;\; usual \; trace, \; not \; finite$
	<i>G</i> -invariant operators on Hilbert space $l^2(G)$
Group VNAs	i.e. $f(xg) = f(x)g$. Kaplansky trace on $l^2(G)$
$\mathcal{N}(G)$	$\operatorname{tr}(\sum a_g g) = a_1$ produces $\operatorname{tr}(f) = \operatorname{tr}(f(1))$.

First and thirds are examples of **finite von Neumann** algebras. Finite means

$$xx^* = 1$$
 implies $x^*x = 1$.

Trace to a dimension

A finite VNA A has a finite, normal and faithful trace tr_A : A → C.

• The trace extends to matrices: $tr([a_{ij}]) = \sum_{i=1}^{n} tr(a_{ii})$.

[Lück] Trace \longrightarrow dimension.

1. If P is a fin. gen. proj.,

 $\dim_{\mathcal{A}}(P) = \operatorname{tr}(f) \in [0,\infty).$

where $f : \mathcal{A}^n \to \mathcal{A}^n$ is a projection with image P.

2. If *M* is **any** module,

 $\dim_{\mathcal{A}}(M) = \sup \{ \dim_{\mathcal{A}}(P) \\ P \leq M \text{ fin. gen. proj.} \}$

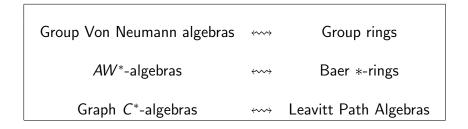
$$\in [0,\infty].$$

What kind of rings have this type of dimension

- 2005 Baer *-rings satisfying certain nine **eight** ([2006]) axioms. If R is such, then $M_n(R)$ is Baer for every n.
- 2012 **Strongly semihereditary rings** = every fin. gen. nonsingular is projective.

If such R also has $* \Rightarrow M_n(R)$ is Baer for every n.

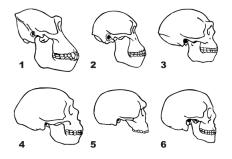
Examples: Finite AW^* -algebras ($AW^* = C^* + Baer$).



(日) (同) (日) (日)

Graph algebra evolution

- 1. **1950s:** Leavitt algebras as examples of rings with $R^m \cong R^n$.
- 1970s: Cuntz's algebras C*-algebras defined by analogous identities.
- 3. **1980s:** Cuntz-Krieger algebras generalization of 2.



(日) (同) (日) (日)

- 4. 1990s: Graph C*-algebras.
- 5. **2000s:** Leavitt path algebras as algebraic analog of 4. and generalization of 1.

Same analogy

Graph C^* -algebra: The graph encodes the structure \rightarrow easy to work with and classify. Encompasses many important examples of C^* -algebras.

Leavitt path algebra: no operator theory. Axiomatic approach.

Graphs and paths

- Start with a graph: vertices, edges, and source and range map, s and r s(e) • r(e)
 Form paths, multiply them by concatenation.
 pq is • if r(p) = s(q) and 0 otherwise.
- 3. Add the set of **ghost edges**...

... and consider **ghost paths** too.

Leavitt path and graph C^* -algebras

edges = partial isometries

r(e)**s**(*e*) Can also do this by **axioms**: V vv = v and vw = 0 if $v \neq w$, E1 $e = \mathbf{s}(e)e = e\mathbf{r}(e)$ E2 $e^* = e^* \mathbf{s}(e) = \mathbf{r}(e)e^*$ Add two more. CK1 $e^*e = \mathbf{r}(e)$, and $e^*f = 0$ if $e \neq f$ CK2 $v = \sum_{e \in s^{-1}(v)} ee^*$ if v regular $(0 < |s^{-1}(v)| < \infty)$. K = field. The **Leavitt path algebra** $L_K(E)$ of E is a free K-algebra (on v, e and e^*) satisfying these axioms. If $K = \mathbb{C}$. The graph **C***-algebra $C^*(E)$ of *E* is the completion of $L_{\mathcal{K}}(E)$. Universal C^{*}-algebra with vertices = generating projections and CK1 and CK2.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ◆ ●

Some basic properties

1. Element in a Leavitt path algebra $L_{\mathcal{K}}(E)$

$$\sum k_{p,q} p q^*$$
 p, q are paths, $r(p) = r(q)$
 $k_{p,q} \in K$

2. $L_{\mathcal{K}}(E)$ has involution *.

For involution $k \mapsto \overline{k}$ in K(can always take it to be identity), define

$$(\sum kpq^*)^* = \sum \overline{k}qp^*$$

Basic properties continued

3. If {vertices} is finite, $L_{\kappa}(E)$ is unital:

 $1=\sum$ all vertices

4. If {vertices} is not finite, $L_{\mathcal{K}}(E)$ has **local units**:

for every x_i , i = 1, ..., n there is idempotent u, $x_i u = u x_i = x_i$. (u is the sum of sources of paths in representation of x_i) Example 1

Paths: *v*, *w*, *e*.

Representation:

$$v = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad w = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \qquad e = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
Path algebra: triangular 2x2 matrices $T_2(K) = \begin{bmatrix} K & K \\ 0 & K \end{bmatrix}$

Ghost edge *e*^{*}. Representation:

$$e^* = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right]$$

Leavitt path algebra: all 2x2 matrices $M_2(K) = \begin{bmatrix} K & K \\ K & K \end{bmatrix}$ Graph C*-algebra: all 2x2 matrices $M_2(\mathbb{C})$, \mathcal{C} ,

$$^{u} \bullet \xrightarrow{e} \bullet^{v} \xrightarrow{f} \bullet^{w}$$

Representation via 3x3 matrices.

Generalizes to *n*-line.

- **Path algebra:** triangular $n \times n$ matrices $T_n(K)$
- **Leavitt path algebra:** all $n \times n$ matrices $M_n(K)$

Graph C*-algebra: all $n \times n$ matrices $M_n(\mathbb{C})$

Paths: $v = 1, e, e^2, e^3...$

Path algebra: Polynomials K[x].

Ghost edge: $e^* = x^{-1}$

Leavitt path algebra: Laurent polynomials $K[x, x^{-1}]$.

Graph C*-algebra: continuous functions on a circle $C(S^1)$.

Representation: e = x

е

Example 3 – Rose

 $e \bigcirc \bullet^{v} \bigcirc f$ Paths: $v = 1, e, f, ef, e^{2}, f^{2}...$ Representation: e = x, f = y Path algebra: $K\langle x, y \rangle$. Ghost edges e^{*}, f^{*} . Leavitt path algebra: L(1, 2) (universal R with $R^{2} \cong R$). Graph C*-algebra: Cuntz algebra \mathcal{O}_{2} .

Generalizes to *n*-rose. Path algebra: $K[x_1, \ldots, x_n]$. Leavitt path algebra: L(1, n)Graph C*-algebra: Cuntz algebra \mathcal{O}_n

Traces on graph algebras

- 1. The usual trace on $M_n(K)$.
- 2. Kaplansky trace on $K[x, x^{-1}]$. tr $(\sum k_n x^n) = k_0$.

Traces on graph C*algebras?On Leavitt path algebras?

(日) (同) (日) (日)

So, let us look at a trace...

 \dots in the most general way. Let R and T be rings. A

T-valued trace on R

is a map tr : $R \rightarrow T$ which is

additive and

► central i.e. tr(xy) = tr(yx)for all $x, y \in R$

If R and T are K-algebras, we also want it to be

► K-linear i.e.
$$tr(kx) = ktr(x)$$

for all $x \in R$ and $k \in K$.

Additional requirements if * is around

x in *-ring is **positive** ($x \ge 0$) if

x =finite sum of yy^* .

Comes from complex conjugation:

$$(a+ib)(a-ib)=a^2+b^2\geq 0.$$

R, T *-rings, tr : $R \rightarrow T$ trace.

- tr is **positive** if $x \ge 0$ implies $tr(x) \ge 0$.
- tr is **faithful** if x > 0 implies tr(x) > 0.

... but not just any map on vertices agrees with CK2.

A central map tr agrees with CK2 iff

$$\operatorname{tr}(v) = \operatorname{tr}(\sum ee^*) = \sum \operatorname{tr}(ee^*) = \sum \operatorname{tr}(e^*e) = \sum \operatorname{tr}(\mathbf{r}(e))$$

for v regular with $e \in \mathbf{s}^{-1}(v)$.

Example.

This does not agree with CK2 since $3 \neq 1 + 1$.

Graph traces

Tomforde 2002. A graph trace is a map t on the set of vertices such that

$$t(v) = \sum_{e \in I} t(\mathbf{r}(e))$$
for
$$I = \mathbf{s}^{-1}(v), \text{ and } v \text{ regular.}$$

lt is

Desirable properties

- 1. Graph traces <---> Traces.
- 2. (P) \iff positive, (F) \iff faithful.

Both fail. The \mathbb{C} -valued tr on $\overline{\mathbb{C}[x, x^{-1}]}$ (=LPA of a loop) given by

$$\operatorname{tr}(x^n) = i^n, \operatorname{tr}(x^{-n}) = i^n$$

has (P) and (F) but is not positive since $t_{f}((1 + v_{f})(1 + v_{f}^{-1})) = 2 + 2$

$$tr((1+x)(1+x^{-1})) = 2+2i.$$

Also, the graph trace with tr(1) = 1 extends to a different trace.

Fixing this - Canonical traces

tr = trace on
$$L_{\mathcal{K}}(E)$$
, p, q = paths.
tr is **canonical** if tr("nondiagonal") = 0 and tr("diagonal") = tr(vertex).

$$\operatorname{tr}(pq^*) = 0$$
, for $p \neq q$ and $\operatorname{tr}(pp^*) = \operatorname{tr}(\mathbf{r}(p))$.

Harmony

Theorem [2016].

canonical trace on $L_{\mathcal{K}}(E)$ \longleftrightarrow graph trace on Ecanonical tr is positive \iff (P) holds.canonical tr is faithful \iff (F) holds.

E 990

Instead of going over 6 pages of proof...

... let me tell you what my **driving force** was.

1. Classification of von Neumann algebras via traces.

・ロト ・聞ト ・ヨト ・ヨト

- 34

2. Results on traces of graph C^* -algebras.

Connecting with the C^* -algebra world

Theorem [Pask-Rennie, 2006]. *E* row-finite and countable. All maps are \mathbb{C} -valued.

```
faithful, semifinite,
lower semicontinuous
gauge-invariant faithful
trace on C^*(E) \longleftrightarrow graph trace on E
```


semifinite = { $x \in C^*(E)^+ | \operatorname{tr}(x) < \infty$ } is norm dense in $C^*(E)^+$. lower semicontinuous = tr(lim_{$n\to\infty$} a_n) \leq lim inf_{$n\to\infty$} tr(a_n) for all $a_n \in C^*(E)^+$ norm convergent.

Bridging

Operator theory trace

Defined on the positive cone.

$$\mathsf{tr}(\mathbf{x}\mathbf{x}^*) = \mathsf{tr}(\mathbf{x}^*\mathbf{x})$$

Faithful if

Algebra trace

Defined everywhere. Central.

Faithful if positive and

$$\operatorname{tr}(xx^*) = 0 \Rightarrow x = 0$$

$$\operatorname{tr}\left(\sum xx^*\right) = 0 \Rightarrow \sum xx^* = 0.$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Connecting the worlds

Corollary [2016]. E countable.

semifinite,				
lower semicont.,				
faithful,		faithful,		faithful
gauge-invariant		canonical		
trace	\longleftrightarrow	trace	\longleftrightarrow	graph trace
on <i>C</i> *(<i>E</i>)		on $L_{\mathbb{C}}(E)$		on <i>E</i>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Where to next with this?

My driving force:

A **von Neumann** algebra is **finite** iff there is a finite, normal, faithful trace.

I wandered:

t

A Leavitt pa	th algebra $L_{\mathcal{K}}(E)$ is	finite	
iff	there is a <i>K</i> -valued	canonical, faithful trace (?)	
iff	the graph is	·	

Recall that a *-ring is finite if

$$xx^* = 1$$
 implies $x^*x = 1$.

Easy: the existence of a faithful trace implies finiteness.

$$xx^* = 1 \implies 1 - x^*x \ge 0 \text{ and } tr(1 - xx^*) = 0 \text{ so}$$

 $tr(1 - x^*x) = tr(1 - xx^*) = 0 \implies 1 - x^*x = 0 \implies x^*x = 1.$

Houston, we have a problem

finite iff
$$xx^* = 1 \Rightarrow x^*x = 1$$
.

What is "1" if E is not finite?

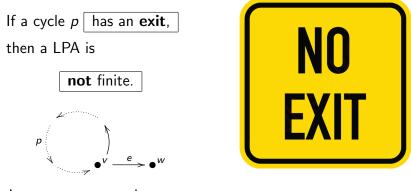
There are still **local units**: for every finite set of elements, there is an idempotent acting like a unit.

A *-ring with local units *R* is **finite** if for every *x* and an idempotent *u* with xu = ux = x,

$$xx^* = u$$
 implies $x^*x = u$.

In this case *u* is a projection (selfadjoint idempotent).

LPAs is finite iff *E* has "no exits"



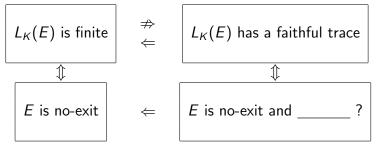
Let x = p + w, and u = v + w.

Then ux = ux = x and $x^*x = u$. If $xx^* = u$, then $pp^* = v \Rightarrow 0 = pp^*e = ve = e$ contradiction.

If v = w, take x = p, u = v and arrive to contradiction too.

Where will the trace take us next?

Idea of "localizing": more general than just for finiteness.



No exits here.

No trace since value of $tr(v) \ge ntr(w)$ for all n.

Localizing

http://liavas.net and arXiv.

・ロト ・ 一下・ ・ ヨト・

э