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University of the Sciences, Philadelphia, USA

Operator
theory

Algebra



John von Neumann’s dream...

... to capture abstractly the concept of an algebra of
observables in quantum mechanics.

Non-commutative measure ! trace −→ dimension function.



Algebraization of Operator Theory

”Von Neumann algebras are blessed with an excess
of structure – algebraic, geometric, topological – so
much, that one can easily obscure, through proof by
overkill, what makes a particular theorem work.”

”If all the functional analysis is stripped away ...
what remains should (be) completely accessible
through algebraic avenues”.

Berberian, S. K. Baer ∗-rings;
Springer-Verlag,
Berlin-Heidelberg-New York,
1972.



The overkill

The overkill that Berberian is referring to:

a mosquito a machine gun



What structure do we need?

I With + and · −→

a ring.

I With an involution,

an additive map ∗
with (xy)∗ = y ∗x∗

and (x∗)∗ = x −→

a ∗-ring.



Traditional candidate – a Baer ∗-ring

A (left) annihilator
of a set X = set of all elements a such

that ax = 0.

A projection
= a self-adjoint (p∗ = p) idempotent

(pp = p).

A Baer ∗-ring
= every annihilator is generated by a

projection.

So annihilator ! closed subspace.

Kaplansky’s dream: to axiomatize
(at least part of) the theory of VNAs.

Followed similar path as von
Neumann (looked at projections,
idempotents, annihilators) and ended
up defining Baer ∗-rings.



Examples and traces

Finite matrices B(H), dim(H) = n with the usual trace
Mn(C)

Infinite matrices B(H), dim(H) =∞, usual trace, not finite

G -invariant operators on Hilbert space l2(G )
Group VNAs i.e. f (xg) = f (x)g . Kaplansky trace on l2(G )
N (G ) tr(

∑
agg) = a1 produces tr(f ) = tr(f (1)).

First and thirds are examples of finite von Neumann
algebras. Finite means

xx∗ = 1 implies x∗x = 1.



Trace to a dimension

I A finite VNA A has a finite, normal and faithful trace
trA : A → C.

I The trace extends to matrices: tr([aij ]) =
∑n

i=1 tr(aii).

[Lück] Trace −→ dimension.

1. If P is a fin. gen. proj.,

dimA(P) = tr(f ) ∈ [0,∞).

where f : An → An is a
projection with image P .

2. If M is any module,

dimA(M) = sup {dimA(P)
P ≤ M fin. gen. proj.}

∈ [0,∞].



What kind of rings have this type of dimension

2005 Baer *-rings satisfying certain nine eight ([2006]) axioms.

If R is such, then Mn(R) is Baer for every n.

2012 Strongly semihereditary rings = every fin. gen.
nonsingular is projective.

If such R also has ∗ ⇒ Mn(R) is Baer for every n.

Examples: Finite AW ∗-algebras (AW ∗ = C ∗ + Baer).



Many ways to bridge the fields

Group Von Neumann algebras ! Group rings

AW ∗-algebras ! Baer ∗-rings

Graph C ∗-algebras ! Leavitt Path Algebras



Graph algebra evolution

1. 1950s: Leavitt algebras as
examples of rings with
Rm ∼= Rn.

2. 1970s: Cuntz’s algebras –
C ∗-algebras defined by
analogous identities.

3. 1980s: Cuntz-Krieger
algebras – generalization of 2.

4. 1990s: Graph C ∗-algebras.

5. 2000s: Leavitt path algebras as algebraic analog of 4.
and generalization of 1.

Recall: C ∗ = complete normed and ∗-algebra,
· and ∗ agree with || ||.



Same analogy

Graph C ∗-algebra: The graph
encodes the structure → easy to
work with and classify.
Encompasses many important
examples of C ∗-algebras.

Leavitt path algebra:
no operator theory.
Axiomatic approach.



Graphs and paths

1. Start with a graph: vertices, edges, and source and range

map, s and r s(e)•
e

%%
•r(e)

2. Form paths, multiply them by concatenation.

pq is •
p

��
•

q

��
• if r(p) = s(q) and 0 otherwise.

3. Add the set of ghost edges...

s(e)•
e
((
•r(e)

e∗

dd

... and consider ghost paths too.



Leavitt path and graph C ∗-algebras

Can also do this by axioms: s(e)•
e
((
•r(e)

e∗

dd

V vv = v and vw = 0 if v 6= w ,

E1 e = s(e)e = er(e)

E2 e∗ = e∗s(e) = r(e)e∗ Add two more.

CK1 e∗e = r(e), and e∗f = 0 if e 6= f

CK2 v =
∑

e∈s−1(v) ee
∗ if v regular (0 < |s−1(v)| <∞).

K= field. The Leavitt path algebra LK (E ) of E is a free
K -algebra (on v , e and e∗) satisfying these axioms.

If K = C. The graph C∗-algebra C ∗(E ) of E is the
completion of LK (E ). Universal C ∗-algebra with

vertices = generating projections
edges = partial isometries

and CK1 and CK2.



Some basic properties

1. Element in a Leavitt path algebra LK (E )

∑
kp,qpq

∗ p, q are paths, r(p) = r(q)
kp,q ∈ K

2. LK (E ) has involution *.

For involution k 7→ k in K
(can always take it to be
identity), define

(
∑

kpq∗)∗ =
∑

kqp∗



Basic properties continued

3. If {vertices} is finite, LK (E ) is unital:

1 =
∑

all vertices

4. If {vertices} is not finite, LK (E ) has local units:

for every xi , i = 1, . . . , n there is idempotent u,
xiu = uxi = xi .

(u is the sum of sources of paths in representation of xi)



Example 1

v• e // •w

Paths: v ,w , e. Representation:

v =

[
1 0
0 0

]
w =

[
0 0
0 1

]
e =

[
0 1
0 0

]

Path algebra: triangular 2x2 matrices T2(K ) =

[
K K
0 K

]
Ghost edge e∗. Representation:

e∗ =

[
0 0
1 0

]

Leavitt path algebra: all 2x2 matrices M2(K ) =

[
K K
K K

]
Graph C∗-algebra: all 2x2 matrices M2(C)



Example class 1 – Matrices

u• e // •v f // •w Representation via 3x3 matrices.

Generalizes to n-line.

• e1 // • e2 // • • en−1 // •

Path algebra: triangular nxn matrices
Tn(K )

Leavitt path algebra: all nxn matrices
Mn(K )

Graph C∗-algebra: all nxn matrices
Mn(C)



Example 2 – Loop

•v

e

��

Paths: v = 1, e, e2, e3.... Representation: e = x

Path algebra: Polynomials K [x ].

Ghost edge: e∗ = x−1

Leavitt path algebra: Laurent
polynomials K [x , x−1].

Graph C∗-algebra: continuous
functions on a circle C (S1).



Example 3 – Rose

•ve 77 f
vv

Paths: v = 1, e, f , ef , e2, f 2.... Representation: e = x ,
f = y Path algebra: K 〈x , y〉. Ghost edges e∗, f ∗.

Leavitt path algebra: L(1, 2) (universal R with R2 ∼= R).

Graph C∗-algebra: Cuntz algebra O2.

Generalizes to n-rose. •v gg ss
��

QQ

Path algebra: K [x1, . . . , xn].

Leavitt path algebra: L(1, n)

Graph C∗-algebra: Cuntz algebra
On



Traces on graph algebras

1. The usual trace on Mn(K ).

2. Kaplansky trace on K [x , x−1].
tr(
∑

knx
n) = k0.

I Traces on graph C ∗algebras?

I On Leavitt path algebras?



So, let us look at a trace...

... in the most general way. Let R and T be rings. A

T-valued trace on R

is a map tr : R → T which is

I additive and

I central i.e. tr(xy) = tr(yx)
for all x , y ∈ R

If R and T are K -algebras, we also want it to be

I K -linear i.e. tr(kx) = ktr(x)
for all x ∈ R and k ∈ K .



Additional requirements if ∗ is around

x in ∗-ring is positive (x ≥ 0) if

x = finite sum of yy ∗.

Comes from complex conjugation:

(a + ib)(a − ib) = a2 + b2 ≥ 0.

R ,T ∗-rings, tr : R → T trace.

I tr is positive if x ≥ 0 implies tr(x) ≥ 0.

I tr is faithful if x > 0 implies tr(x) > 0.



It should all depend on the vertices...

... but not just any map on vertices agrees with CK2.

A central map tr agrees with CK2 iff

tr(v) = tr(
∑

ee∗) =
∑

tr(ee∗) =
∑

tr(e∗e) =
∑

tr(r(e))

for v regular with e ∈ s−1(v).

Example.

•1 •3oo // •1

This does not agree with CK2 since 3 6= 1 + 1.



Graph traces

Tomforde 2002. A graph trace is a
map t on the set of vertices such that

I t(v) =
∑

e∈I t(r(e)) for

I = s−1(v), and v regular.

It is

I positive if (P) t(v) ≥
∑

e∈I t(r(e)) for all v , and

finite I ⊆ s−1(v).

I faithful if positive and (F) t(v) > 0 for all v .



Desirable properties

1. Graph traces ! Traces.

2. (P) ⇐⇒ positive, (F) ⇐⇒ faithful.

Both fail. The C-valued tr on
C[x , x−1] (=LPA of a loop) given by

tr(xn) = in, tr(x−n) = in

has (P) and (F) but is not positive
since

tr((1 + x)(1 + x−1)) = 2 + 2i .

Also, the graph trace with tr(1) = 1 extends to a different
trace.



Fixing this – Canonical traces

tr = trace on LK (E ), p, q = paths.

tr is canonical if tr(“nondiagonal”) = 0 and
tr(“diagonal”) = tr(vertex).

tr(pq∗) = 0, for p 6= q and tr(pp∗) = tr(r(p)).



Harmony

Theorem [2016].

canonical trace on LK (E ) ! graph trace on E

canonical tr is positive ⇐⇒ (P) holds.

canonical tr is faithful ⇐⇒ (F) holds.



Instead of going over 6 pages of proof...

... let me tell you what my driving force was.

1. Classification of von Neumann algebras via traces.

2. Results on traces of graph C ∗-algebras.



Connecting with the C ∗-algebra world

Theorem [Pask-Rennie, 2006]. E row-finite and countable.
All maps are C-valued.

faithful, semifinite,
lower semicontinuous
gauge-invariant faithful
trace on C ∗(E ) ! graph trace on E

semifinite = {x ∈ C ∗(E )+| tr(x) <∞} is norm dense in
C ∗(E )+.
lower semicontinuous = tr(limn→∞ an) ≤ lim infn→∞ tr(an)
for all an ∈ C ∗(E )+ norm convergent.



Bridging

Operator
theory trace

Defined on the
positive cone.

tr(xx∗) = tr(x∗x)

Faithful if

Algebra trace

Defined
everywhere.

Central.

Faithful if
positive and

tr(xx∗) = 0⇒ x = 0. tr
(∑

xx∗
)

= 0⇒
∑

xx∗ = 0.



Connecting the worlds

Corollary [2016]. E countable.

semifinite,
lower semicont.,
faithful, faithful, faithful
gauge-invariant canonical
trace ! trace ! graph trace
on C ∗(E ) on LC(E ) on E



Where to next with this?

My driving force:

A von Neumann algebra is finite
iff there is a finite, normal, faithful trace.

I wandered:

A Leavitt path algebra LK (E ) is finite
iff there is a K -valued canonical, faithful trace (?)
iff the graph is .

Recall that a ∗-ring is finite if

xx∗ = 1 implies x∗x = 1.

Easy: the existence of a faithful trace implies finiteness.

xx∗ = 1 ⇒ 1− x∗x ≥ 0 and tr(1− xx∗) = 0 so

tr(1− x∗x) = tr(1− xx∗) = 0 ⇒ 1− x∗x = 0 ⇒ x∗x = 1.



Houston, we have a problem

finite iff xx∗ = 1 ⇒ x∗x = 1.

What is “1” if E is not finite?

There are still local units: for
every finite set of elements, there
is an idempotent acting like a
unit.

A ∗-ring with local units R is finite if for every x and an
idempotent u with xu = ux = x ,

xx∗ = u implies x∗x = u.

In this case u is a projection (selfadjoint idempotent).



LPAs is finite iff E has “no exits”

If a cycle p has an exit,

then a LPA is

not finite.

p

��

xx

55 •v e //

WW

•w

Let x = p + w , and u = v + w .

Then ux = ux = x and x∗x = u. If xx∗ = u, then pp∗ = v ⇒
0 = pp∗e = ve = e contradiction.

If v = w , take x = p, u = v and arrive to contradiction too.



Where will the trace take us next?

Idea of “localizing”: more general than just for finiteness.

LK (E ) is finite
;
⇐ LK (E ) has a faithful trace

m m

E is no-exit ⇐ E is no-exit and ?

•v 44//
** $$ •w

No exits here.

No trace since value of
tr(v) ≥ ntr(w) for all n.



Localizing

http://liavas.net and arXiv.


