K-theory classification of graded ultramatricial *-algebras

Lia Vaš

University of the Sciences, Philadelphia

Classification

Approximately finite-dimensional C*-algebras

= countable direct limits of finite dimensional C^* -algebras.

Some nice properties:

・ロト ・四ト ・ヨト ・ヨ

- K_0 classifies them completely. As a corollary,
- two AF-algebras are isomorphic as rings iff they are isomorphic as *-algebras.

Operator theory

Field $K = \mathbb{C}$

Finite dimensional *C**-algebra:

finite sum of $\mathbb{M}_n(\mathbb{C})$

AF-algebra:

$$\varinjlim_n A_n$$

for A_n fin. dim. Same as $\overline{\bigcup_n \phi_n(A_n)}$

Algebra

Any field K. **Matricial algebra over** K: finite sum of $\mathbb{M}_n(K)$ **Ultramatricial**

algebra:

 $\varinjlim_n A_n$

for A_n matricial.

Same as $\bigcup_{n} \phi_n(A_n)$

Operator Theory versus Algebra

For C^* -algebras A, B

 $A \cong B$ as algebras iff $A \cong B$ as *-algebras.

For *-algebras over a field K, this **does not hold**. **Example:** \mathbb{C} with the identity involution and \mathbb{C} with the complex-conjugate involution.

So, the following question is relevant.

For which *-algebras A and B, $A \cong B$ as algebras iff $A \cong B$ as *-algebras?

More generally...

For which class of algebras $\mathcal C$ and $A,B\in \mathcal C$

when $A \cong B$ as algebras iff $A \cong B$ as rings?

Partial answer: when K_0 is sensitive enough invariant – when

 $A \cong B$ as algebras iff $K_0(A) \cong K_0(B)$ as (pointed) groups.

In this case, we say that K_0 **completely classifies** the algebras in C.

イロト 不得下 イヨト イヨト

э

Every ring homomorphism $A \to B$ induces a pointed group homomorphism $K_0(A) \to K_0(B)$.

So, if K_0 classifies the algebras and $f : A \to B$ is a ring iso, then $K_0(f)$ is an iso and so $K_0(A) \cong K_0(B)$ implies $A \cong B$ as algebras. QED

Example. Ultramatricial algebras over a field.

Operator Theory version: AF C*-algebras.

Non-Example.
$$K = \mathbb{Z}_2$$
, $C = \text{all } K\text{-algebras}$,
 $A = \mathbb{C} \oplus \mathbb{C}$ with trivial $\mathbb{Z}_2\text{-action}$,
 $B = \mathbb{C} \oplus \mathbb{C}$ with $1(a, b) = (b, a)$.

When there are stars...

... then
$$\mathbb{Z}_2$$
 acts on $\mathcal{K}_0(A)$ for $A\in\mathcal{C}$ by

$$[P]\mapsto [\mathsf{Hom}_A(P,A)]$$

or, via idempotents, as

$$[p] = [(a_{ij})] \mapsto [p^*] = [(a_{ji}^*)].$$

So, K_0 completely classifies *-algebras in \mathcal{C} if

 $A \cong B$ as *-algebras iff $K_0(A) \cong K_0(B)$ as (pointed) $\mathbb{Z}[\mathbb{Z}_2]$ -modules.

\mathbb{Z}_2 -action on K_0 is often trivial

... like, for example, when every element of K_0 can be represented using **projections**.

Happens for K_0 (field), $K_0(C^*$ -algebra) or K_0 (LPA).

lf

 \mathbb{Z}_2 -action is trivial and \mathcal{K}_0 completely classifies *-algebras in \mathcal{C}

then for any $A, B \in C$ the following are equivalent. $A \cong B$ as rings.

 $A \cong B$ as *-rings.

$$A \cong B$$
 as algebras.

$$A \cong B$$
 as *-algebras.

Why was I interested in this?

Because of the **Isomorphism Conjecture** for graph algebras stating that

 $L_{\mathbb{C}}(E) \cong L_{\mathbb{C}}(F)$ as rings iff $C^*(E) \cong C^*(F)$ as *-algebras.

Formulated by Gene Abrams and Mark Tomforde. Note that $L_{\mathbb{C}}(E) \cong L_{\mathbb{C}}(F)$ as *-algebras $\Rightarrow C^*(E) \cong C^*(F)$ as *-algebras.

Gene

Mark

State of IC and Generalized IC

IC is known to hold for:

- Acyclic graphs (Abrams-Tomforde 2008).
- Row-finite, cofinal graphs with Condition (L) and at least one cycle (Abrams-Tomforde 2008).
- Graphs with finitely many vertices (Eilers-Restorff-Ruiz-Sørensen 2016).

Generalized IC:

 $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ as rings iff $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F)$ as *-algebras.

GIC is known to hold for:

- Acyclic graphs if the involution of K is "nice" (follows from a 1987 paper of Ara).
- Finite graphs in which cycles have no exits (Aranda-Vaš 2013).

Considering K_0 is useful...

 \dots for classification-related questions, but K_0 does not classify LPAs.

 $L_{\mathcal{K}}(E) \ncong 0$ but

 $K_0(L_K(E))=K_0(0)=0$

So let us consider more structure of a LPA

Leavitt path algebra is also graded.

If Γ is an abelian group, a ring R is Γ -graded if

$$R = \bigoplus_{\gamma \in \Gamma} R_{\gamma}$$
 such that $R_{\gamma}R_{\delta} \subseteq R_{\gamma+\delta}$.

ring

graded ring

・ロン ・ 理 と ・ ヨ と ・ ヨ ・ うらつ

Bizarro world of graded rings

 $x \in R_{\gamma}$ is <u>homogeneous</u>. In the world of graded rings, "<u>element</u>" is replaced by "<u>homogeneous element</u>"

in many instances.

	\longleftrightarrow	graded field = every homog. $x \neq 0$ has x^{-1}
$\begin{array}{l} \mathbf{regular} = \\ (\forall x) \ x \in xRx \end{array}$	$\langle \cdots \rangle$	graded regular = $(\forall \text{ homog. } x) \ x \in xRx$
free = has basis	$\leftrightarrow \rightarrow \leftrightarrow \rightarrow$	graded free = has homog. basis

Not so bizarro after all...

1. Although they appear more specific, graded rings are

2. Many rings are naturally graded: group rings, LPAs ...

For a LPA,
$$\Gamma = \mathbb{Z}$$
 and $L_{\mathcal{K}}(E)_n =$ span $\{pq^* \mid |p| - |q| = n\}$.

K[x, x⁻¹] is not a field but it is a graded field (with ℤ grading K[x, x⁻¹]_n = {kxⁿ}).

Shifts

If $M = \bigoplus_{\gamma \in \Gamma} M_{\gamma}$ is a graded module and $\delta \in \Gamma$, then

$M(\delta) = \bigoplus_{\gamma \in \Gamma} M_{\gamma + \delta}$

 $A = \Gamma$ -graded ring, $\gamma_1, \ldots, \gamma_n \in \Gamma$, $\mathbb{M}_n(\mathbf{A})(\gamma_1, \ldots, \gamma_n)$ is $\mathbb{M}_n(A)$ graded so that

 $(a_{ij}) \in \mathbb{M}_n(A)(\gamma_1, \ldots, \gamma_n)_{\delta}$ iff $a_{ij} \in A_{\delta + \gamma_j - \gamma_i}$

For LPAs, this really helps!

 $E = \bullet \longrightarrow \bullet \longrightarrow \bullet \qquad F = \bullet \bullet \bullet \bullet$ $L_{\mathcal{K}}(E) \cong L_{\mathcal{K}}(F) \cong \mathbb{M}_{3}(\mathcal{K}) \text{ as algebras however}$ $L_{\mathcal{K}}(E) \cong_{\mathsf{gr}} \mathbb{M}_{3}(\mathcal{K})(0, 1, 2) \cong_{\mathsf{gr}} L_{\mathcal{K}}(F) \cong_{\mathsf{gr}} \mathbb{M}_{3}(\mathcal{K})(0, 1, 1)$

Grading helps...

... distinguish between algebras of these pairs also.

▲□▶ ▲□▶ ▲注▶ ▲注▶ … 注: のへ⊙

A graded module is **graded projective** iff it is a summand of graded free module.

 K_0^{gr} -group has been considered by

Roozbeh showed that K_0^{gr} is more sensitive invariant than K_0 .

So, it classifies better.

Roozbeh Hazrat.

Shifts induce extra structure on $K_0^{\rm gr}$

 K_0^{gr} of a Γ -graded ring is a $\mathbb{Z}[\Gamma]$ -module with

$\gamma[P] = [P(\gamma)]$

For LPAs, $\Gamma = \mathbb{Z}$ and we can think of $\mathbb{Z}[\mathbb{Z}]$ as $\mathbb{Z}[x, x^{-1}]$ and

 $\label{eq:Kgr} \begin{array}{l} \mathsf{K}^{\text{gr}}_0(\mathsf{L}_{\mathsf{K}}(\mathsf{E})) \text{ is a} \\ \\ \mathbb{Z}[\mathsf{x},\mathsf{x}^{-1}]\text{-module}. \end{array}$

So, $K_0^{\rm gr}$ classifies better.

Graded K_0 classifies better

But besides grading, a LPA also has an involution...

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Graded and Involutive...

E 996

Graded and Involutive

A *-ring R graded by Γ is a **graded** *-ring if

In this case, $K_0^{gr}(R)$ is a

Roozbeh-Lia goals:

- Classification of graded ultramatricial *-algebras using K₀^{gr}...
- 2. ... which implies all known classifications.
- 3. Isomorphism Conjecture for (some?) LPAs.

 $\mathbb{Z}[\mathbb{Z}_2] - \mathbb{Z}[\Gamma]$ bimodule.

 $R_{\gamma}^* \subseteq R_{-\gamma}.$

Elliott (1976). K_0 -group classification of AF C^* -algebras.

Goodearl's Regular-rings book. Ultramatricial algebras over a field.

Ara (1987). Ultramatricial *-algebras over a *-field with "nice" involution.

Hazrat (2013). Graded ultramatricial algebras over a graded field using K_0^{gr} .

Problem. Goodearl's and Roozbeh's proofs cannot be adapted to *-rings.

Contractive maps

If A and B are Γ -graded rings, a $\mathbb{Z}[\Gamma]$ -module homomorphism $f : K_0^{gr}(A) \to K_0^{gr}(B)$ is **contractive** if \bullet f is **order-preserving** (i.e. x > 0 implies f(x) > 0),

- ► *f* is generating-interval-preserving (i.e. $0 \le x \le [A]$ implies $0 \le f(x) \le [B]$).
- f is **<u>unit-preserving</u>** if f([A]) = [B].

If A and B are non-unital and A^u and B^u are unitizations, $[A^u]$ and $[B^u]$ take over the role of [A] and [B].

Classification entails

For graded matricial *-algebras A and B over a Γ -graded *-field F show the following.

1. Fullness

For $f : K_0^{\text{gr}}(A) \to K_0^{\text{gr}}(B)$, there is $\phi : A \to B$ with $K_0^{\text{gr}}(\phi) = f$.

2. Faithfulness

For $\phi, \psi : A \to B$, $\mathcal{K}_0^{gr}(\phi) = \mathcal{K}_0^{gr}(\psi)$ if and only if $\phi = \theta \psi$

for some type of inner automorphism θ of B.

3. Elliott-Bratteli intertwining

If A and B are graded ultramatricial *-algebras $f : K_0^{gr}(A) \cong K_0^{gr}(B)$ iff there is $\phi : A \cong B$ with $K_0^{gr}(\phi) = f$.

Fullness.

Non-graded Example.

$$A = \mathbb{M}_2(K) \oplus K,$$

$$B = \mathbb{M}_5(K) \oplus \mathbb{M}_4(K).$$

$$f = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in \mathbb{M}_2(\mathbb{Z})$$

contractive $\Rightarrow a_{ij} \ge 0$ and

$$2a_{11} + 1a_{12} \le 5$$

$$2a_{21} + 1a_{22} \le 4$$

the dimension formulas

For example,
$$f = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}$$
 induces $\phi : R \to S$ given by
 $\begin{pmatrix} a & 0 & b & 0 & 0 \\ 0 & a & 0 & b & 0 \\ c & 0 & d & 0 & 0 \\ 0 & c & 0 & d & 0 \\ 0 & 0 & 0 & 0 & e \end{pmatrix}$, $\begin{pmatrix} e & 0 & 0 & 0 \\ 0 & e & 0 & 0 \\ 0 & 0 & e & 0 \\ 0 & 0 & 0 & 0 & e \end{pmatrix}$).

Fullness. Graded *-Example

$$\begin{split} & \Gamma = \mathbb{Z}_3 = \mathbb{Z}[x]/(x^3 = 1). \ K \ *\text{-field trivially graded.} \\ & A = \mathbb{M}_2(K)(1, x) \qquad \oplus A(x) \\ & B = \mathbb{M}_5(K)(1, 1, x, x, x^2) \qquad \oplus \mathbb{M}_4(K)(1, 1, x^2, x^2) \end{split}$$

For example,
$$f = \begin{pmatrix} 2 & x^2 \\ x & x + x^2 \end{pmatrix}$$
, induces $\phi : A \to B$

$$\left(\left(\begin{array}{ccc} a & b \\ c & d \end{array} \right), e \right) \mapsto \left(\left(\begin{array}{cccc} a & 0 & b & 0 & 0 \\ 0 & a & 0 & b & 0 \\ c & 0 & d & 0 & 0 \\ 0 & c & 0 & d & 0 \\ 0 & 0 & 0 & 0 & e \end{array} \right), \left(\begin{array}{cccc} d & 0 & c & 0 \\ 0 & e & 0 & 0 \\ b & 0 & a & 0 \\ 0 & 0 & 0 & e \end{array} \right) \right).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Fullness. Dimension Formulas

In the previous example, $f \in \mathbb{M}_2(\mathbb{Z}[\Gamma])$ is contractive if $a_{ii} = a_{ii1} + a_{ii2}x + a_{ii3}x^2$ with $a_{iit} \ge 0$ satisfies the **pre-dimension** formulas (1) $a_{111}+a_{112}x+a_{113}x^2+a_{111}x^2+a_{112}+a_{113}x+a_{121}x^2+a_{122}+a_{123}x$ $< 2 + 2x^2 + x$ (2) $a_{211}+a_{212}x+a_{213}x^2+a_{211}x^2+a_{212}+a_{213}x+a_{221}x^2+a_{222}+a_{223}x$ < 2 + 2x.which imply the dimension formulas inequality (1) $(x^{0}$ -terms) $a_{111} + a_{112} + a_{122} \le 2$ (x¹-terms) $a_{112} + a_{113} + a_{123} \le 1$ $(x^2$ -terms) $a_{111} + a_{113} + a_{121} \le 2$ inequality (2) $(x^{0}$ -terms) $a_{211} + a_{212} + a_{222} \le 2$ $(x^{1}-\text{terms})$ $a_{211} + a_{213} + a_{221} < 0$ (x²-terms) $a_{213} + a_{212} + a_{223} \le 2$ -

Faithfulness

A, B graded matricial *-algebras, $\phi, \psi : A \rightarrow B$ are graded *-homomorphisms (not necessarily unital). TFAE.

1.
$$\mathcal{K}_0^{\mathrm{gr}}(\phi) = \mathcal{K}_0^{\mathrm{gr}}(\psi)$$

2. $\exists u \in B_0$ unitary, $\forall a \in A$, $\phi(a) = u\psi(a)u^*$.
3. $\exists u \in B_0$ invertible, $\forall a \in A$, $\phi(a) = u\psi(a)u^{-1}$.

Assumptions

For fullness. F has

enough unitaries

i.e. every component F_{γ} of F contains an unitary.

For faithfulness. F₀ is

2-proper and *-pythagorean

i.e. $xx^* + yy^* = 0 \Rightarrow x = y = 0$ and for all x, y there is z with $xx^* + yy^* = zz^*$.

Not very restrictive since

- ▶ A field K and \mathbb{Z} -graded $K[x, x^{-1}]$ have enough unitaries.
- ► C*-algebras are 2-proper and *-pythagorean.
- K 2-proper and *-pythagorean ⇒ K[x, x⁻¹], M_n(K), M_n(K[x, x⁻¹]) are such too.

Classification Theorem.

- *F* = graded ∗-field with enough unitaries,
 *F*₀ = 2-proper and ∗-pythagorean.
- A, B = graded ultramatricial *-algebras.

For

a contractive $\mathbb{Z}[\Gamma]$ -iso $f: K_0^{\mathrm{gr}}(A) \to K_0^{\mathrm{gr}}(B)$

there is

a graded *-iso $\phi: A \to B$ with $K_0^{gr}(\phi) = f$.

Intertwining idea

Corollaries

- 1. All known classifications.
- Elliott (1976). AF C*-algebras.

Goodearl's Regular-rings book. Ultramatricial algebras over a field.

Ara (1987). Ultramatricial *-algebras over a *-field with "nice" involution.

Hazrat (2013). Graded ultramatricial algebras over a graded field.

<u>2. Iso Conjecture</u> for a class of LPAs.

No-exit graphs

Abrams-Aranda-Perera-Siles (2010).

If E is row-finite, countable and

- every infinite path ends in a sink or a cycle, and
- ▶ no cycle has an exit, then $L_K(E)$ is a direct sum of **ultramatricial algebras over** K and **over** $K[x, x^{-1}]$.

Roozbeh-Lia. An iso on K_0^{gr} -level maps the acyclic to the acyclic part and the comet to the comet part. Hence,

 $K_0^{\rm gr}$ completely classifies this class of LPAs

Corollary. Graded GIC holds for these LPAs.

Wondering about...

- The assumptions for Classification Theorem for graded ultramatricial algebras. Can they be weakened?
- Classification Conjecture for LPAs.

Is there C*-analogue? Something with gauge action possibly?

