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Abstract

A ring is clean (resp. almost clean) if each of its elements is the sum of a unit (resp.
regular element) and an idempotent. In this paper we define the analogous notion
for ∗-rings: a ∗-ring is ∗-clean (resp. almost ∗-clean) if its every element is the sum
of a unit (resp. regular element) and a projection. Although ∗-clean is a stronger
notion than clean, for some ∗-rings we demonstrate that it is more natural to use.

The theorem on cleanness of unit-regular rings from [4] is modified for ∗-cleanness
of ∗-regular rings that are abelian (or reduced or Armendariz). Using this result, it
is shown that all finite, type I Baer ∗-rings that satisfy certain axioms (considered
in [2] and [26]) are almost ∗-clean. In particular, we obtain that all finite type I
AW ∗-algebras (thus all finite type I von Neumann algebras as well) are almost ∗-
clean. We also prove that for a Baer ∗-ring satisfying the same axioms, the following
properties are equivalent: regular, unit-regular, left (right) morphic and left (right)
quasi-morphic. If such a ring is finite and type I, it is ∗-clean. Finally, we present
some examples related to group von Neumann algebras and list some open problems.

Key words: Clean rings, Baer ∗-rings, ∗-regular rings, Finite von Neumann
algebras
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1 Introduction

The motivation for this paper came from a question posed by T.Y. Lam at the
Conference on Algebra and Its Applications held at Ohio University, Athens,
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OH in March, 2005. Lam asked which von Neumann algebras are clean as
rings.

A ring is clean if its every element can be written as the sum of a unit and
an idempotent. Clean rings were defined by W. K. Nicholson in late 1970s in
relation to exchange rings (see [22]) and have been attracting attention ever
since. Clean rings are, in a way, an additive analogue of unit-regular rings: in
a unit-regular ring, every element can be written as the product of a unit and
an idempotent, for clean rings “the product” in this condition changes to “the
sum”. Thus, it was not a coincidence that the question of the exact relationship
between the classes of unit-regular and clean rings was of particular interest.
In [4], the authors characterize unit-regular rings as clean rings in which every
element a can be decomposed as the sum of a unit u and an idempotent e
with aR∩eR = 0 (Camillo-Khurana Theorem). Other examples of clean rings
include local rings, semiperfect rings and right artinian rings. A nice overview
of commutative clean rings is given in the first section of [20].

A ring is almost clean if its every element can be written as a sum of a regular
element (neither a left nor a right zero-divisor) and an idempotent. Up to
date, almost cleanness has been considered mostly for commutative rings.
The concept was introduced in [21]. In [21], it is shown that a commutative
Rickart ring is almost clean. In this paper, we shall exhibit various classes of
almost clean rings that are not necessarily commutative.

Going back to Lam’s question, let us turn to von Neumann algebras. Since a
von Neumann algebra is a ∗-ring (i.e. a ring with involution) in some cases
it may be more natural to work with projections, self-adjoint idempotents,
rather than with idempotents. Many other examples of different matrix rings
and various rings of operators naturally come equipped with an involution.
For such rings the properties of being ∗-regular, Baer ∗-ring or Rickart ∗-ring
take over the roles of regular, Baer or (right or left) Rickart respectively (see,
for example, [2]). Also, as S. K. Berberian points out in [2], “the projections
are vastly easier to work with than idempotents” so one should utilize this
opportunity when dealing with a ∗-ring. Because of this, we define the following
more natural concept of cleanness for ∗-rings.

Definition 1 A ∗-ring is ∗-clean (resp. almost ∗-clean) if its every element
can be written as the sum of a unit (resp. regular element) and a projection.

Clearly, if a ∗-ring is (almost) ∗-clean it is also (almost) clean.

This definition is further justified by the following observation: if a unital ring
R embeds in a clean (resp. ∗-clean) ring S with the same idempotents (resp.
projections), then R is almost clean (resp. almost ∗-clean). Every finite von
Neumann algebra A embeds in a unit-regular ring U (the algebra of affiliated
operators). Moreover the ring U has the same projections as A. Since unit-
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regular rings are clean by the Camillo-Khurana Theorem ([4, Theorem 1]), U
is clean. Thus, we may hope that the cleanness of U will be preserved in A
at least to the extent of almost cleanness. The problem is that the Camillo-
Khurana Theorem does not guarantee that one can decompose an element in
a unit-regular ∗-ring as the sum of a unit and a projection, just as the sum
of a unit and an idempotent. We would need the stronger version to pull this
decomposition from U back down to A. However, we shall demonstrate that
for a class of von Neumann algebras the ∗-clean decomposition in U is possible
and that it yields almost ∗-cleanness of A.

The paper is organized as follows. In Section 2, we recall some known con-
cepts and results. In Section 3, we prove some preliminary results and basic
properties of ∗-clean rings. We also modify the Camillo-Khurana Theorem to
fit the ∗-ring setting and prove that abelian (or reduced or Armendariz) ∗-
regular rings are ∗-clean (Proposition 6). We also show that every ∗-ring that
embeds in a ∗-clean regular ∗-ring with same projections is almost ∗-clean
(Proposition 8).

In Section 4, we consider a class of Baer ∗-rings for which the involution ex-
tends to their maximal right ring of quotients (∗-extendible rings). We recall
Baer ∗-ring axioms (A1)–(A7) considered in [2] and [26] and prove a result
stating that every type In Baer ∗-ring satisfying (A2) is almost ∗-clean (The-
orem 10). Using that, we show that every type I Baer ∗-ring that satisfies
(A1)–(A6) is almost ∗-clean (Theorem 12). In particular, this theorem gives
us that all finite, type I AW ∗-algebras (thus all finite type I von Neumann al-
gebras as well) are almost ∗-clean (Corollary 14). If regularity is also assumed
in Theorems 10 and 12 and Corollary 14, we obtain ∗-cleanness. In Section
4, we also prove that for a Baer ∗-ring that satisfies (A1)–(A6), the following
properties are equivalent: regular, unit-regular, left (right) morphic and left
(right) quasi-morphic (Corollary 13).

In Section 5, we turn to AW ∗ and von Neumann algebras. Since every finite
AW ∗-algebra of type I is almost ∗-clean (as Corollary 14 shows), we wonder
if there are examples of almost ∗-clean AW ∗-algebras that are not type I. We
show that a C∗-sum of finite type I AW ∗-algebras is almost ∗-clean (Proposi-
tion 15). Moreover, a C∗-sum of finite type I regular AW ∗-algebras is ∗-clean.
Using this fact, we consider a group von Neumann algebra that is not of type I
but is ∗-clean. We also consider other group von Neumann algebras (Example
16) that provide examples of some other possible situations. We conclude the
paper with a list of open problems in Section 6.
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2 Preliminaries

An associative unital ring R is a ∗-ring (or ring with involution) if there is an
operation ∗ : R→ R such that

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, (x∗)∗ = x for all x, y ∈ R.

If a ∗-ring R is also an algebra over k with involution ∗, then R is a ∗-algebra if
(ax)∗ = a∗x∗ for a ∈ k, x ∈ R. An element p of a ∗-ring R is called a projection
if p is a self-adjoint (p∗ = p) idempotent (p2 = p). There is an equivalence
relation on the set of projections of a ∗-ring R defined by p ∼ q iff x∗x = p
and xx∗ = q for some x ∈ R.

Recall that a ring is right Rickart (also called right p.p.-ring) if the right an-
nihilator of each element is generated by an idempotent. A ring is said to
be Rickart ∗-ring if the right annihilator of each element is generated by a
projection. Moreover, it can be shown that such projection is unique. Since
annl(x) = (annr(x

∗))∗ the property of being Rickart ∗-ring is left/right sym-
metric. In every Rickart ∗-ring, the involution is proper (x∗x = 0 implies
x = 0, see [2, Proposition 2, p. 13]). The projections in a Rickart ∗-ring form
a lattice ([2, Proposition 7, p. 14]) with p ≤ q iff p = pq (equivalently p = qp).

Every element x of a Rickart ∗-ring R determines a unique projection p such
that xp = x and annr(x) = annr(p) = (1 − p)R and a unique projection q
such that qx = x and annl(x) = annl(q) = R(1 − q). In this case, p is called
the right projection of x and is denoted by RP(x), and q is the left projection
of x and is denoted by LP(x).

A ∗-ring R is ∗-regular if any of the following equivalent conditions hold (see
[2, Proposition 3, p. 229]): (1) R is regular and Rickart ∗-ring; (2) R is regular
and the involution is proper; (3) R is regular and for every x in R there exists
a projection p such that xR = pR.

A Rickart C∗-algebra is a C∗-algebra (complete normed complex algebra with
involution such that ||a∗a|| = ||a||2) that is also a Rickart ∗-ring.

A ring is Baer if the right (equivalently left) annihilator of every nonempty
subset is generated by an idempotent. A Baer ∗-ring is a ∗-ring R such that
the right annihilator of every nonempty subset is generated by a projection.
A ∗-ring is a Baer ∗-ring if and only if it is a Rickart ∗-ring and the lattice of
projections is complete ([2, Proposition 1, p. 20]).

An AW ∗-algebra is a C∗-algebra that is a Baer ∗-ring. If H is a Hilbert space
and B(H) the algebra of bounded operators on H, then B(H) is an AW ∗-
algebra. If A is a unital ∗-subalgebra of B(H) such that A = A′′ where A′
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is the commutant of A in B(H), then A is called a von Neumann algebra.
Equivalently, A is a von Neumann algebra if it is a unital ∗-subalgebra of
B(H) that is closed with respect to weak operator topology. A von Neumann
algebra is an AW ∗-algebra ([2, Proposition 9]) while the converse is not true.

3 ∗-clean and almost ∗-clean rings

In this section, we turn to ∗-rings. Recall that a ring is abelian if every idem-
potent is central. The ∗-version of this concept is as follows.

Definition 2 A ∗-ring is ∗-abelian if every projection is central.

Clearly, a ∗-ring that is abelian is also ∗-abelian. The following lemma proves
that for a Rickart ∗-ring, the conditions of abelian and ∗-abelian are equivalent
and gives some further characterization of abelian right Rickart rings. Also,
recall that a ring is said to be strongly clean if its every element can be written
as the sum of a unit and an idempotent that commute. Clearly, a strongly clean
ring is clean. If a ring is abelian, then clean implies strongly clean as well. We
shall say that a ring is almost strongly clean if its every element can be written
as the sum of a regular element and an idempotent that commute.

Let us define a ∗-ring to be (almost) strongly ∗-clean if its every element can
be written as the sum of a unit (resp. regular element) and a projection that
commute.

Lemma 3 (1) If R is a ∗-abelian Rickart ∗-ring, then every idempotent is a
projection.

(2) If R is a Rickart ∗-ring, then R is abelian iff R is ∗-abelian.
(3) Let R be a (∗-)abelian Rickart ∗-ring. Then the following conditions are

equivalent:
(i) The ring R is ∗-clean.

(ii) The ring R is clean.
(iii) The ring R is strongly (∗)-clean.

(4) If R is an abelian Rickart ∗-ring, then R is almost clean, almost ∗-clean
and almost strongly (∗)-clean.

PROOF. (1) Let e be an idempotent in a ∗-abelian Rickart ∗-ring R. Since
R is Rickart ∗-ring, there is a projection p such that eR = annr(1− e) = pR.
Thus pe = e and ep = p. But since p is central, e = pe = ep = p.

Condition (2) follows from (1).
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(3) Condition (i) always implies (ii). By part (1), the converse holds for Rickart
∗-rings that are abelian (equivalently ∗-abelian by (2)). Condition (iii) always
implies (ii). The converse clearly holds if all idempotents are central.

(4) By [21, Proposition 16], a commutative Rickart ring is almost clean. The
proof uses [6, Lemma 2 and Lemma 3]. These two lemmas ensure that an
element in an abelian right Rickart ring is a product of a regular element and
an idempotent. The proof of Proposition 16 uses just that the idempotents
are central, not that the ring has to be commutative. Thus, we have that an
abelian right Rickart ring is almost clean.

So, if R is an abelian Rickart ∗-ring, it is almost clean. But since idempotents
are projections by (1), R is also almost ∗-clean. Since all the idempotents
(projections) are central, R is almost strongly ∗-clean as well.

Before we turn to (almost) ∗-cleanness of some specific classes of rings, let
us consider the following proposition proving some basic properties of ∗-clean
rings. If R is a ∗-ring, the ring Mn(R) of n × n matrices over R has natural
involution inherited from R: if A = (aij), A

∗ is the transpose of (a∗ij). So,
Mn(R) is also a ∗-ring.

Proposition 4 Let R be a ∗-ring.

(1) If p is a projection such that pRp and (1 − p)R(1 − p) are ∗-clean, then
R is ∗-clean.

(2) If p1, p2, . . . , pn are orthogonal projections with 1 = p1 +p2 + . . .+pn, and
piRpi ∗-clean for each i, then R is ∗-clean.

(3) If R is ∗-clean, then Mn(R) is ∗-clean.

PROOF. The proof of (1) follows the proof of [8, Lemma on p. 2590] with
idempotent in Pierce decomposition of R changed to projection and every in-
stance of idempotent further in the proof changed to projection. The condition
(2) follows from (1) by induction, and (3) follows directly from (2).

Let us now recall the statement of the Camillo-Khurana Theorem ([4, Theorem
1]).

Theorem 5 (Camillo-Khurana) A ring R is unit-regular if and only if ev-
ery element a of R can be written as a = u+ e where u is a unit and e is an
idempotent such that aR ∩ eR = 0.

This theorem has the following proposition as a corollary.
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Proposition 6 Let R be a ∗-ring. If R is ∗-regular and abelian, then every
element a of R can be written as a = u + p where u is a unit and p is a
projection such that aR ∩ pR = 0.

PROOF. The ring R is unit-regular since it is regular and abelian ([7, Corol-
lary 4.2, p. 38]). Thus, the condition equivalent to unit-regularity in Theorem 5
holds. Since every ∗-regular ring is Rickart ∗-ring and in every abelian Rickart
∗-ring an idempotent is a projection by Lemma 3, the proposition follows
directly from Theorem 5.

Remark 7 1. The assumption that R is abelian (let us denote this condition
by (1)) in Proposition 6 can be replaced by any of the conditions below.

(2) The ring R is semicommutative if ab = 0 implies aRb = 0 for all a, b ∈ R.
(3) The ring R is symmetric if rab = 0 implies rba = 0 for all r, a, b ∈ R.
(4) The ring R is Armendariz if p(x)q(x) = 0 then piqj = 0 for all p(x) =∑n

i=0 pix
i and q(x) =

∑m
j=0 qjx

j in R[x].
(5) The ringR is Armendariz of power series type if p(x)q(x) = 0 then piqj = 0

for all p(x) =
∑∞
i=0 pix

i and q(x) =
∑∞
j=0 qjx

j in R[[x]].
(6) The ring R is reduced if it has no nonzero nilpotent elements.

In general, (6) ⇒ (3) ⇒ (2) ⇒ (1), (6) ⇒ (5) ⇒ (2), and (5) ⇒ (4) ⇒
(1), and each of the implications is strict (see [10], [18] [17] and [11]).

There are analogues of conditions (1)–(6) for R-modules (see [25] and [1]).
In particular, a ring R satisfies one of the properties above if and only if the
right module RR satisfies the corresponding module theoretic property. [1,
Theorem 2.14] proves that the module version of the six conditions are all
equivalent for a Rickart module. Thus, conditions (1) – (6) are equivalent
for a right Rickart ring.

Since regular rings are Rickart, the assumption that R is abelian in Propo-
sition 6 can be replaced by any of the conditions (2)–(6). Also, in part (3)
of Proposition 8, the condition that the ring is abelian could be replaced by
any of the conditions (2)–(6).

2. The projection p and unit u from the statement of Proposition 6 commute
since R is abelian so that R is strongly clean as well.

3. If R is a ∗-ring such that every element a of R can be written as a = u+ p
where u is a unit and p is a projection such that aR ∩ pR = 0, then R is
unit-regular by Theorem 5.

We will use the following result in the next section.

Proposition 8 Let R be a ∗-ring that can be embedded in a ∗-clean regular
∗-ring with the same projections as R.

(1) The ring R is almost ∗-clean.
(2) If R is regular, then R is ∗-clean.
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(3) If R is abelian, then R is almost strongly ∗-clean.

PROOF. (1) Let Q be a ∗-clean ring in which R is embedded and a ∈ R.
Then a = u + p for a unit u in Q and a projection p in Q. But p is in R
by assumption. Thus, u = a − p is in R as well. Since u is a unit in Q,
0 = annQr (u) ⊇ annRr (u) and the same holds for the left annihilators. Thus u
is regular.

(2) If R is regular, then every element is either invertible or a zero-divisor.
Thus, the element u from the proof of (1) is invertible and so R is ∗-clean.

(3) An abelian almost ∗-clean ring is almost strongly ∗-clean by Lemma 3.

Remark 9 Let us note that parts (1) and (3) of Proposition 8 are not valid
if “almost” is deleted. Note that Z (with trivial involution) can be embedded
in Q with same projections (0 and 1) but Z is not (strongly) clean.

4 ∗-clean and almost ∗-clean Baer ∗-rings

In this section, we introduce a class of ∗-rings that can be embedded in ∗-
regular rings with the same projections. Using Proposition 8, we shall prove
(almost) ∗-cleanness of a class of Baer ∗-rings.

A ∗-ring R is said to be ∗-extendible if its involution can be extended to an
involution of its maximal right ring of quotients Qr

max(R). It is easy to see that
this extension is unique in this case. Also, if R is ∗-extendible, then Qr

max(R)
is its maximal left ring of quotients (the isomorphism of R to the opposite
ring of R extends to an isomorphism of Qr

max(R) and its opposite ring). Thus,
we can write Qmax for Qr

max(R) = Ql
max(R). If R is right nonsingular (thus left

nonsingular as well since it is a ∗-ring), then Qmax is regular and left and right
self-injective. Thus, Qmax is unit-regular (see [7, Theorem 9.29, p. 105]).

If ∗ is proper in a nonsingular and ∗-extendible ring R, then the extension of
∗ is proper in Qmax. To see that let x∗x = 0 for some x ∈ Qmax. This implies
that (xr)∗xr = r∗x∗xr = 0 and so xr = 0 for all r such that xr ∈ R. Since
I = {r ∈ R|xr ∈ R} is a dense right ideal of R, xI = 0 implies that x = 0.
The involution in every Rickart ∗-ring is proper and every Rickart ∗-ring is
nonsingular. Thus, if R is ∗-extendible Rickart ∗-ring, then Qmax is ∗-regular.

In [9], Handelman proved that a ∗-extendible Baer ∗-ring has the same pro-
jections as its maximal ring of quotients Qmax. As is the case with many other
properties of Baer ∗-rings, sufficient conditions for ∗-extendibility have been
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given in terms of certain Baer ∗-ring axioms. Let R be a Baer ∗-ring and let
us look at the following axioms.

(A1) The ring R is finite if x∗x = 1 implies xx∗ = 1 for all x ∈ R.
(A2) The ring R satisfies existence of projections (EP)-axiom: for every 0 6= x ∈

R, there exists a self-adjoint y ∈ {x∗x}′′ such that (x∗x)y2 is a nonzero
projection;

The ring R satisfies the unique positive square root (UPSR)-axiom: for
every x ∈ R such that x = x∗1x1 + x∗2x2 + . . . + x∗nxn for some n and some
x1, x2, . . . , xn ∈ R (such x is called positive), there is a unique y ∈ {x∗x}′′
such that y2 = x and y positive. Such y is denoted by x1/2.

(GC) The ring R satisfies the generalized comparability if for every two projections
p and q, there is a central projection c such that cp � cq and (1− c)q �
(1− c)p. Here p � q means that p ∼ r ≤ q for some projection r.

(LP∼RP) For every x ∈ R, LP (x) ∼ RP (x).

It is easy to see that (A1) is equivalent to the condition that 1 is a finite
projection (a projection is said to be finite if it is not equivalent to its proper
subprojection).

By [9, Proposition 2.10], a Baer ∗-ring with the following properties is ∗-
extendible: (1) R is finite; (2) (LP∼ RP) holds; and (3) R has sufficiently
many projections (for every x there is y with xy projection or, equivalently,
every nonzero right (or left) ideal contains a nonzero projection). These con-
ditions are met for finite Baer ∗-rings satisfying (A2) axiom: (LP∼RP) follows
from (A2) by [2, Corollary on p. 131] and the existence of sufficiently many
projections is guaranteed by (EP) axiom. Thus, every Baer ∗-ring satisfying
(A1) and (A2) is ∗-extendible.

Let us consider the following additional axioms.

(A3) Partial isometries are addable.
(A4) The ring R is symmetric: for all x ∈ R, 1 + x∗x is invertible.
(A5) There is a central element i ∈ R such that i2 = −1 and i∗ = −i.
(A6) The ring R satisfies the unitary spectral (US)-axiom: for a unitary u ∈ R

with RP(1−u) = 1, there is an increasingly directed sequence of projections
pn ∈ {u}′′ with sup pn = 1 such that (1 − u)pn is invertible in pnRpn for
every n.

(A7) The ring R satisfies the positive sum (PS)-axiom; if pn is orthogonal se-
quence of projections with supremum 1 and an ∈ R such that an is positive
(as defined in axiom (A2)) an ≤ pn, then there is a ∈ R such that apn = an
for all n.

Every finite AW ∗-algebra (so a finite von Neumann algebra as well) satisfies
axioms (A1) – (A7) ([2, Remark 1, p. 249]).
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In [2], Berberian uses (A1)–(A6) to embed a ring R in a regular ring Q: he
shows that a Baer ∗-ring R satisfying (A1)– (A6) can be embedded in a regular
Baer ∗-ring Q satisfying (A1) – (A6) such that R is ∗-isomorphic to a ∗-subring
of Q, all projections, unitaries and partial isometries of Q are in R (see [2,
Chapter 8]) and that Q is unique up to ∗-isomorphism (see [2, Proposition
3, p. 235]). The ring Q is ∗-regular as well since it is regular and Baer (thus
Rickart as well) ∗-ring. It is called the regular ring of Baer ∗-ring R.

The regular ring Q is also the maximal and the classical ring of quotients of R
([26, Proposition 3]). Thus, it is left and right self-injective. Every self-injective
(both left and right) and regular ring is unit-regular (see [7, Theorem 9.29, p.
105]) so Q is unit-regular as well.

If R satisfies (A1) – (A7), the ring Mn(R) of n × n matrices over R is a
Rickart ∗-ring for every n (by [2, Theorem 1, p. 251]). Moreover, Mn(R) is
semihereditary ([26, Corollary 5]). In [27] it is shown that Mn(R) is a finite
Baer ∗-ring for every n ([27, Theorem 4]). This gave an affirmative answer to
the question of Berberian ([2, Exercise 4D, p.253]) whether Mn(R) is a Baer
∗-ring if R satisfies (A1)–(A7). In [2], Berberian uses additional two axioms
(called (A8) and (A9) in [26]) to prove that Mn(R) is finite. In [27], it is shown
that (A9) follows from (A1)–(A7).

Mimicking the type decomposition for von Neumann algebras, the three types
of Baer ∗-rings have been considered. A Baer ∗-ring is said to be of:

(i) type I if it has faithful abelian projection (a projection p is abelian iff pRp is
abelian ring and p is faithful if there are no nontrivial central idempotents
e with ep = 0);

(ii) type II if it has faithful finite projection but no nontrivial abelian projec-
tions; and

(iii) type III if there is no nontrivial finite projections.

A Baer ∗-ring has a unique decomposition into three Baer ∗-rings of the three
different types.

Moreover, a finer type decomposition of types I and II is possible. A Baer
∗-ring is said to be of:

- type If if it is of type I and finite;
- type I∞ if it is of type I and 0 is the only abelian projection;
- type II1 if it is finite and 0 is the only finite central projection;
- type II∞ if 0 is the only abelian and the only finite central projection.

Every Baer ∗-ring has a unique decomposition into five Baer ∗-rings of the
following types: If , I∞, II1, II∞ and III. For details on type decompositions
see [2, Theorems 2 and 3, p. 94].
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Type If rings can be further classified. Let R be of type If such that there is
a positive integer n and n equivalent orthogonal abelian projections that add
to 1 (called homogeneous partition of 1 of order n). In this case R is said to
be of type In. If R is of type If and has (GC), it can be uniquely decomposed
into a C∗-sum of types In ([2, Theorem 2, p. 115]). If R has (GC) and is of
type In for some n, then R is ∗-isomorphic to Mn(A) where A is an abelian
Baer ∗-ring uniquely determined up to ∗-isomorphism ([2, Proposition 2, p.
112]). This gives us the following result.

Theorem 10 If a Baer ∗-ring R is of type In and satisfies (A2), it is almost
∗-clean. If, in addition, R is regular, then it is ∗-clean.

PROOF. Note that R satisfies (GC) since (A2) holds ([2, Theorem 1, p. 80]).
Thus, R is ∗-isomorphic to Mn(A) where A is an abelian Baer ∗-ring uniquely
determined up to ∗-isomorphism ([2, Proposition 2, p. 112]). Moreover, if
p1, p2, . . . , pn are orthogonal abelian projections forming a homogeneous par-
tition of 1 of order n, then A is ∗-isomorphic to the corner p1Rp1 (and piRpi
for any i = 1, . . . , n).

A corner pRp of a ∗-ring R where p is a projection, preserves the following
properties: Rickart ∗-ring, Baer ∗-ring (see [16, Theorem 4, p. 6, and p. 30]),
regular (if x ∈ pRp then x = xyx implies x = xyx = (xp)y(px) = x(pyp)x), ∗-
regular (if R has a proper involution then it is easy to see the involution in pRp
inherited from R is also proper), and regular and right and left self-injective
(see [7, Proposition 13.7, p. 98]). If R is a Baer ∗-ring with Q = Qmax(R) and
p is a projection in R, then pQp is the maximal ring of quotients of pRp. This
is because R is semiprime (every Baer ∗-ring is semiprime) and nonsingular
(every Rickart ∗-ring is nonsingular) so pQp is an essential extension of pRp
that is right self-injective and so it is equal to Qmax(pRp) (see [12, Proposition
13.39]). This last result is also in [3, Proposition 0.2, p. 135].

Thus, the maximal ring of quotients of the abelian Baer ∗-ring A ∼= p1Rp1 is
p1Qp1. The ring p1Qp1 is an abelian ∗-regular ring so it is ∗-clean by Propo-
sition 6. The partition p1, p2, . . . , pn is a homogeneous partition of order n for
Q as well. Since piQpi ∼= p1Qp1

∼= Qmax(A) is ∗-clean for every i, Q is ∗-clean
by Proposition 4.

The ring R satisfies (A1) and (A2) and so it is ∗-extendible. Thus, the pro-
jections of R and Q are the same. Then R is almost ∗-clean by Proposition
8.

Now we can prove the almost ∗-cleanness of rings of type If . First we prove
the following proposition.

11



Proposition 11 Let R be a Baer ∗-ring that satisfies (A1) – (A6). If there
are central orthogonal projections pn with supremum 1 and pnR are either of
type In or equal to 0, then R is almost ∗-clean. If R is also regular, then (A6) is
not needed, R is isomorphic to a direct product of rings pnR and R is ∗-clean.

PROOF. As we noted before, axioms (A1)–(A6) are sufficient to guarantee
that R embeds in a ∗-regular ring Q with same projections as R satisfying
(A1)–(A6) (for more details see [2, Section 52]). It is easy to see that pnR is
also a Baer ∗-ring that satisfies (A1)–(A6) for every n (here it is essential that
the projections pn are central). By uniqueness of regular ring of Baer ∗-ring
satisfying (A1)–(A6) (see [2, Proposition 3, p. 235]), it is easy to see that pnQ
is the regular ring of pnR for all n and thus that pnR and pnQ have the same
projections for every n. Since pnR and pnQ have the same projections and
pnR is either trivial or of type In, pnQ is also either trivial or of type In as
well. Then pnQ is ∗-clean by Theorem 10 for every n.

The crucial ingredient in the rest of the proof is the following result given in
[2, Theorem 2, p. 237].

(R) If R is a Baer ∗-ring that satisfies (A1) – (A6) and there are central or-
thogonal projections pn with supremum 1, then the regular ring Q of R is
∗-isomorphic to the direct product of rings pnQ via x 7→ (pnx).

Since a direct product of ∗-clean rings is ∗-clean (easy to see), the regular ring
Q of ring R is ∗-clean by (R). Then R is almost ∗-clean by Proposition 8.

To prove the last sentence of the statement of this proposition, note that if R
is regular and satisfies (A1)–(A5), then (A6) holds as well (see [2, Exercise 4A,
p. 247]) and R is equal to its regular ring. Then R is isomorphic to a direct
product of rings pnR by (R). In this case, the regular rings pnR are ∗-clean
by Theorem 10 and so R, a direct product of ∗-clean rings, is ∗-clean as well.

Theorem 12 If a Baer ∗-ring R is of type If and satisfies (A2) – (A6), it is
almost ∗-clean. If R is also regular, it is ∗-clean.

PROOF. Every Baer ∗-ring of type If that satisfies (A2) has a sequence of
orthogonal central projections pn with supremum 1 such that pnR is either
0 or of type In (see [2, Theorem 2, p. 115]). Condition (PC) assumed in [2,
Theorem 2, p. 115] follows from (GC) (by [2, Proposition 2, p. 78]) and (GC)
follows from (A2) ([2, Theorem 1, p. 80]). Thus every type If Baer ∗-ring
that satisfies (A2)–(A6), satisfies the assumptions of Proposition 11. Thus R
is almost ∗-clean. If, in addition, R is regular, R is ∗-clean also by Proposition
11.
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Let us conclude this section with the observation that Baer ∗-rings with (A1)–
(A6) are morphic exactly when they are regular (and this happens exactly
when the rings are their own regular rings). Recall that a ring is right mor-
phic if annr(x) ∼= R/xR for every x ∈ R. The following five conditions are
equivalent (see [12, Exercise 19A, p. 270] and [28, Corollary 3.16]): (1) R is
unit-regular, (2) R is regular and right morphic, (3) R is regular and left mor-
phic, (4) R is right Rickart and left morphic, and (5) R is left Rickart and
right morphic. Thus, if R is both left and right Rickart, the conditions of being
unit-regular, left morphic and right morphic are equivalent.

In [24], it is shown that every right morphic ring is left principally injective
(also called left P-injective) meaning that every map Rx → R extends to R
([24, Theorem 24]). If R is both left and right Rickart, the conditions of being
regular, left P-injective and right P-injective are equivalent. This follows from
[24, Proposition 27] and [28, Corollary 3.15].

In [5], a weaker notion of right morphic ring, called right quasi-morphic, is
considered: for every x ∈ R, there is y and z such that xR = annr(y) and
annr(x) = zR. It is shown that the results of P-injectivity from [24] hold if
“morphic” is replaced by “quasi-morphic”.

Corollary 13 Let R be a Baer ∗-ring that satisfies (A1)–(A6). If Q is the
regular ring of R, then the following conditions are equivalent:

(1) R = Q.

(2) R is regular. (3) R is unit-regular.

(4) R is left morphic. (5) R is right morphic.

(6) R is left quasi-morphic. (7) R is right quasi-morphic.

PROOF. (1) ⇔ (2). If R = Q then R is regular since Q is. Conversely, if R
is regular, then R = Q by uniqueness of the regular ring ([2, Proposition 3, p.
235]).

(2) ⇔ (3). If R is regular, then R = Q implies that R is its own maximal
(left and right) ring of quotients (see [26, Proposition 3] and note that the
proof uses just (A1)–(A6) and not (A7)). Thus, R is regular and (left and
right) self-injective. Then R is unit-regular (see [7, Theorem 9.29, p. 105]).
The converse (3) ⇒ (2) always holds.

(3) ⇔ (4) ⇔ (5). As observed above using results from [28], this is true for
every Rickart ∗-rings.

(6) ⇒ (2). As observed above using result from [28], if R is both left and
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right Rickart, the conditions of being regular, left P-injective and right P-
injective are equivalent. Since left quasi-morphic implies right P-injective by
[24, Lemma 3], left quasi-morphic implies regular.

By symmetry, (7) ⇒ (2) as well. The condition (3) implies (4) and (5) which
imply (6) and (7) respectively. Hence, all seven conditions are equivalent.

Note that in general the following hold: (2) is weaker than (3), (4) and (5)
are weaker than (3), and neither (4) nor (5) implies the other. The examples
of rings illustrating these claims can be found in [24]. Also, (6) and (7) are
weaker than (3) – (5) and neither (6) nor (7) implies the other. The examples
of rings illustrating these properties can be found in [5].

5 ∗-clean and almost ∗-clean von Neumann algebras

In this section, we turn to AW ∗ and von Neumann algebras. First, let us
note that all AW ∗-algebras satisfy (A2)–(A7) (see [2, pp. 48, 70, 129, 233 and
244] and [14, p. 327]). In particular, all finite AW ∗-algebras satisfy (A1)–(A7).
Thus we have the following.

Corollary 14 An AW ∗-algebra of type If (in particular a von Neumann al-
gebra of type If) is almost ∗-clean. If it is also regular, it is ∗-clean.

It is interesting to note that one of the key arguments in the proof of Propo-
sition 11 is that a direct product of ∗-clean rings is ∗-clean. For C∗-algebras,
however, the concepts of direct product is not suitable concept for “product”
since the coordinate-wise norm might fail to be complete. A direct sum of
algebras, on the other hand, might fail to be a unitary algebra. Because of
this, a more appropriate concept of a product is considered.

If {Ai} is a family of C∗-algebras, its C∗-sum is defined to be the ∗-subalgebra
of the direct product

∏
Ai containing all elements (ai) such that sup ||ai|| is

finite. Then the supremum norm is complete and this is a C∗-algebra (see [2,
Section 10]). In [14], this algebra is denoted by

∑⊕Ai. The properties of being
Rickart and Baer are preserved by C∗-sums of C∗-algebras and so a C∗-sum of
Rickart C∗ and AW ∗-algebras remain Rickart C∗ and AW ∗ respectively ([2,
Proposition 1, p. 52]).

When working with families of central orthogonal projections with supremum
1, C∗-sums provide an appropriate framework because of the following result
([2, Proposition 2, p. 53]).
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(
∑⊕) If {pi} is an orthogonal family of central projections with supremum 1 in

an AW ∗-algebra A, then A is ∗-isomorphic to
∑⊕ piA via x 7→ (pix).

Proposition 15 If Ai are If type AW ∗-algebras, then
∑⊕Ai is almost ∗-

clean. If Ai are also regular,
∑⊕Ai is ∗-clean.

PROOF. The proof follows the idea of the proof of Proposition 11. Let A
denote

∑⊕Ai. It is easy to see that A is a finite AW ∗-algebra as well so it has
the regular ring. Let Qi be the regular ring of Ai and Q the regular ring of A.
Since the projections in Q and A are the same, there are central orthogonal
projections pi in Q with supremum 1 such that piQ ∼= Qi by uniqueness of the
regular ring. So Q is ∗-isomorphic to the C∗-sum of Qi. On the other hand,
since Q is regular, it is ∗-isomorphic to direct product of Qi by result (R)
quoted in the proof of Proposition 11. The rings Qi are ∗-clean by Corollary
14 (rings Qi are of type If because rings Ai are of type If and the projections
in Qi and Ai are the same). Thus, Q is ∗-clean since it is a direct product
of ∗-clean rings. Since the projections in A and Q are the same, A is almost
∗-clean by Proposition 8.

If Ai are regular, Ai = Qi and so Ai are ∗-clean. The C∗-sum
∑⊕Ai is ∗-

isomorphic to the direct product so it is ∗-clean as well.

We shall exhibit an example of a von Neumann algebra that is ∗-clean and
not of type If . An open question which still remains is whether there are such
examples of type II1 (and the remaining three types as well). The consider-
ation of factors of type II1 would provide an important step in proving (or
disproving) the (almost) cleanness of algebras of type II1. To motivate further
investigation in this direction, we finish the paper with some examples and
some questions.

Let us consider the class of group von Neumann algebras. This class provides
us with some concrete examples of finite von Neumann algebras. Let G be
a group. The complex group ring CG is a pre-Hilbert space with an inner
product and an involution given by

〈
∑
g∈G

agg,
∑
h∈G

bhh 〉 =
∑
g∈G

agbg and

∑
g∈G

agg

∗ =
∑
g∈G

agg
−1.

The Hilbert space completion of CG is l2(G), the space of square summable
complex valued functions over the group G:

l2(G) = {
∑
g∈G

agg |
∑
g∈G
|ag|2 <∞ }.
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The involution from CG extends to l2(G).

The group von Neumann algebra NG is the space of G-equivariant bounded
operators from l2(G) to itself:

NG = { f ∈ B(l2(G)) | f(xg) = f(x)g for all g ∈ G and x ∈ l2(G) }.

The algebra NG is a von Neumann algebra on H = l2(G) since it is the weak
closure of CG in B(l2(G)) so it is a ∗-subalgebra of B(l2(G)) which is weakly
closed (see [13, Example 9.7] for details). The algebra NG is finite since it has
a normal, faithful trace trA(f) = 〈f(1), 1〉 (every finite von Neumann algebra
has such a trace and, conversely, a von Neumann algebra with such a trace is
finite, for details see [13, Section 9]). The regular ring of NG is the algebra of
affiliated operators U(G) (see [13, Section 8]).

Since NG is finite, just types If and II1 are possible. Recall that a group is
said to be virtually abelian if it has an abelian subgroup of finite index. The
types of NG are classified according to the properties of group G as follows:

(i) The algebra NG is of type If iff G is virtually abelian. If G is finitely
generated, NG is of type II1 iff G is not virtually abelian.

(ii) The algebra NG is of type II1 iff Gf has infinite index (Gf is the normal
subgroup of G of elements with finitely many elements in the conjugacy
class or, equivalently, of elements whose centralizer has finite index).

(iii) The algebra NG is a factor (its center is isomorphic to C{1}) iff Gf is
trivial.

[13, Lemma 9.4, p. 337] contains more details. Moreover, NG is semisimple
iff G is finite (see [13, Exercise 9.11, p. 367]). Note also that an AW ∗-algebra
is commutative iff it is abelian ([2, Example 2, p. 90]). Thus, G is an abelian
group iff NG is an abelian ∗-ring. Now let us consider the following examples.

Example 16 (1) Finite abelian groups give rise to commutative and semi-
simple group von Neumann algebras. Finite and not abelian groups give
rise to non-commutative (nor reduced, nor Armendariz) semisimple group
von Neumann algebras.

(2) Let G = Z. Then NG is commutative and not semisimple (since G is
infinite). Moreover, NG is not regular: NG can be identified with the
space of (equivalence classes of) essentially bounded measurable complex
function on the unit circle (see [13, Example 1.4]). Its regular ring, the
algebra of affiliated operators U(G) of NG, can be identified with the
space of (equivalence classes of) all measurable complex functions on a
unit circle (see [13, Example 8.11]). Thus NG 6= U(G) and so NG is not
regular by Corollary 13.

By Corollary 13, NG is not morphic (nor quasi-morphic) since it is
not regular. On the other hand, U(G) is strongly ∗-clean by Proposition
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6 and NG is almost strongly ∗-clean by Proposition 8. Thus, this is an
almost strongly clean Baer ∗-ring that is not morphic and not regular.

Note also that the group ring CG is not clean by [19, Proposition 2.7]
(stating that if R and G are commutative and the group ring RG is a
clean ring, then R is clean and G is a torsion group.) Since NG is almost
clean, we have the following situation: a non-clean ring is dense (in the
topological sense, since NG is the closure of CG in the weak topology)
in an almost clean ring which is dense in a clean ring (U(G)).

(3) Let G = Z⊕D3 where D3 is the dihedral group (group of symmetries) of
an equilateral triangle. This is an example of non-regular (so non-morphic
as well) and non-abelian ring. The group G is virtually abelian and so
NG is of type If . Thus NG is almost ∗-clean by Corollary 14.

Note that the algebras in all of the above examples are If type (because all
the groups considered are virtually abelian). Now let us consider some non-
virtually abelian groups.

Let {Gα}α∈Λ be a family of groups. Then

N (
∏
Gα) ∼=

∑
⊕N (Gα) ≤

∏
N (Gα)

The last inclusion could be strict if the family of groups is infinite and the
algebras N (Gα) are not regular (e.g. every Gα is Z). This is because

∏N (Gα)
does not have to be complete and

∑⊕N (Gα) is always complete. The first
two algebras are isomorphic since the elements pα = (δαβ1β)β∈Λ where 1α is the
identity element in Gα, are central orthogonal projection with supremum 1 in
N (

∏
Gα). Thus, N (

∏
Gα) is ∗-isomorphic to

∑⊕ pαN (
∏
Gα) =

∑⊕N (Gα)
by (

∑⊕) ([2, Proposition 2, p. 53]).

If all groups Gα are finite, the algebrasN (Gα) are regular and so
∑⊕N (Gα) =∏N (Gα) by Proposition 11 and by (

∑⊕). Note that we have equality and
not just isomorphisms because the isomorphism from Proposition 11 and from
(
∑⊕) that maps x = (xα) onto (pαx) = (xα), is identity in this case. Thus,∑⊕N (Gα) =

∏N (Gα) ∼= N (
∏
Gα) and N (

∏
Gα) is ∗-clean.

(4) Let {Gn}∞n=1 be a countably infinite family of finite groups and let G =∏
Gn. If Gn are abelian, NG is an example of a type If (I1 in fact) regular

ring that is not semisimple. If infinitely many groups Gn are not abelian
(for example, we can take Gn = D3 for every n), then NG is a regular
and ∗-clean (by Proposition 15) ring that is not of type If (since G is not
virtually abelian).

This last example shows that there are clean Baer ∗-rings outside of type If .

Finally, let us consider some groups of type II1.
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(5) Let G = Z ∗ Z be the free group on two generators. Then Gf is trivial and
has infinite index and so NG is a factor of type II1. Is it (almost) clean?

Note also that we can easily construct non-∗-isomorphic factors of type
II1. For example, let Π be the group of permutations on a countably infinite
set that leave fixed all but finitely many elements ([15, Example 6.7.7]).
Then N (Z ∗ Z) and N (Π) are both factors of type II1 but are not ∗-
isomorphic (see [15, Theorem 6.7.8]).

6 Questions

We conclude the paper with a list of some questions.

(1) Find an example of a ∗-ring that is clean but not ∗-clean. By Lemma 3,
such example cannot be found in the class of abelian Rickart ∗-rings.

(2) Which type If AW ∗-algebras (and Baer ∗-rings with (A1)–(A6)) are
clean? We know that regular type If AW

∗-algebras are clean. Are there
examples outside of this class?

(3) AreAW ∗-algebras (and Baer ∗-rings with (A1)–(A6)) of type II1 (almost)
clean? A possible first step in this consideration might be to determine
if the group von Neumann algebra of the free group on two generators
is almost clean. Then, consideration of other types could follow leading
to a complete answer to Lam’s question on cleanness of von Neumann
algebras.

(4) Do Theorem 10, Theorem 12 and Corollary 14 hold if “almost clean”
is replaced by “almost strongly clean”? In case of group von Neumann
algebras, are all type If group von Neumann algebras almost strongly
clean (i.e. if G is virtually abelian, is NG almost strongly clean)?

Also, it would be interesting to see which results that hold for strongly
clean rings hold for strongly ∗-clean rings as well. In addition, in [23]
Nicholson asked if a unit-regular ring is strongly clean. We ask if a unit-
regular and ∗-regular ring is strongly ∗-clean.

References
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