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Main Characters

A damsel in distress:
von Neumann Algebra

A knight in shinning armor:
certain Baer ∗-Ring



The story of von Neumann Algebra begins...

John von Neumann’s dream – to capture abstractly the
concept of an algebra of observables in quantum mechanics.
He constructed

I non-commutative generalization of Hilbert space/
probability theory.



Von Neumann Algebra – the powerful

Overcomes the limits of classical Suitable for
Hilbert space/probability theory. quantum mechanics.

Yields all the types of Still capable of describing
non-commutative measures large (infinite in size or
that occur in classical theory in degrees of freedom)

quantum systems.
Corresponds to

Dimension function normalized measure in
classical probability space.



Von Neumann Algebra – in distress

”Von Neumann algebras are blessed with an excess
of structure – algebraic, geometric, topological – so
much, that one can easily obscure, through proof by
overkill, what makes a particular theorem work.”

”If all the functional analysis is stripped away ...
what remains should (be) completely accessible
through algebraic avenues”.

Berberian, S. K. Baer ∗-rings;
Springer-Verlag,
Berlin-Heidelberg-New York,
1972.



The overkill

The overkill that Berberian is referring to:

a mosquito a machine gun



VNA Character Expanded

H – Hilbert space

B(H) – bounded operators.

A von Neumann algebra A is a

1) ∗-closed unital subalgebra of B(H),

2a) equal to its double commutant A′′

(where A′ = {x ∈ B(H) | ax = xa
for all a ∈ A})
equivalently

2b) weakly closed in B(H).



Five Types

finite, discrete In, n ∈ ω µ on {1, 2, . . . , n}

infinite, discrete I∞ µ on {1, 2, . . .}

finite, continuous II1 µ on [0,1]

infinite, continuous II∞ µ on R

very infinite III µ on {0,∞}



Examples

In B(H), dim(H) = n “finite matrices”

I∞ B(H), dim(H) = ∞ “infinite matrices”

group VNA for G “very infinite and nonabelian”
II1 G -invariant operators on Hilbert space l2(G )

i.e. f (xg) = f (x)g

II∞ “infinite matrices” over type II1

Types In and II1 are called finite von Neumann algebras.



Exposition – Plot Device

I A finite VNA A has a normal and faithful linear trace
trA : A → C.

Examples. 1. Usual trace on Mn(C). “Kaplansky trace”
on group VNAs: tr(f ) = a1 for f (1) =

∑
agg ∈ l2(G ).

I The trace extends to matrices: tr([aij ]) =
∑n

i=1 tr(aii).

I [Lück] This defines dimension. For fin. gen. proj.
module P

dimA(P) = tr(f ) ∈ [0,∞).

where f : An → An is a projection with image P .

I [Lück] The dimension extends to all A-modules.

dimA(M) = sup{dimA(P)|P ≤ M , P fin. gen. proj.}
∈ [0,∞].



Law and Order – Enter the Rings

Von Neumann: studied lattice of
projections. Led him to
von Neumann regular rings.

Kaplansky’s dream: to axiomatize (at
least part of) the theory of VNAs.
Followed similar path as von Neumann
(looked at projections, idempotents,
annihilators) – ended up defining
Baer ∗-rings and AW ∗-algebras.



The Knight – Baer ∗-Ring

Baer ring – every right annihilator is
generated by an idempotent.

Baer ∗-ring – every right annihilator is
generated by a projection.

AW∗-algebra – Baer ∗-ring that is also
a C ∗-algebra.

AW∗ generalizes VNA’s; Baer ∗
generalizes AW∗.



Act 1 – Berberian sees trouble...

Berberian: “Baer ∗-rings are a compromise between operator
algebras and lattice theory. Both the operator-theorist

(“but this is too general!”)

and the lattice-theorist

(“but this can be generalized!”)

will be unhappy...”



... but finds hope.

Berberian continues: “.... but uncommitted algebraists may
find them enjoyable. (...) The test that counts is the test of
intrinsic appeal. The subject will flourish if and only if students
find its achievements exciting and its problems provocative.”



Shining armor – Seven Axioms

A1 A Baer ∗-ring R is finite if x∗x = 1 implies xx∗ = 1 for
all x ∈ R .

A2 R satisfies existence of projections and unique
positive square root axioms.

A3 Partial isometries are addable.

A4 R is symmetric: for all x ∈ R , 1 + x∗x is invertible.

A5 There is a central element i ∈ R such that i2 = −1 and
i∗ = −i .

A6 R satisfies the unitary spectral axiom (if unitary u is
such that annr (1− u) is sufficiently small, then 1− u is
locally invertible in a sequence of subrings that converge
to R).

A7 R satisfies the positive sum -axiom (certain positive
elements have convergent countable sums).



A ring with A1 – A7 is von-Neumann-algebra-like

1. Berberian: R can be embedded in a regular ring Q
satisfying A1–A7, having the same projections as R .

2. V.: R is Ore and Qcl(R) = Q = Qmax(R).

3. Berberian: There is dimension function: { projection
over R } → continuous functions on a nice space with
values in [0,∞) that is

I Same on equivalent projections;
I Fixes central projections;
I Faithful;
I Additive on orthogonal projections.



Culmination – Berberian’s Question

If R is Baer when is Mn(R) also Baer?

I For infinite types, the question is not interesting
because R ∼= Mn(R).

I For finite types, axioms A1 – A7 do not seem to
be enough!



Act 2 – Two “unwelcome guests”

A8 Mn(R) satisfies the parallelogram law.
(p ∨ q − q ∼ p − p ∧ q)
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A9 Every sequence of orthogonal projections in Mn(R) has a
supremum.



What do A8 and A9 bring?

I Berberian: Mn(R) is a Baer ∗-ring with the dimension
function on projections. Mn(Q) is its regular ring.

I V.: Mn(R) is semihereditary.

I V.: The dimension for every module can be defined.

1. dim(P) is dimension of projection onto P for P f.g.p.
Values in C[0,∞)(X ).

2. For any M, dim(M) is supremum of dim(P) for P ≤ M
f.g.p. Values in C[0,∞)(X ) ∪ {∞}.

I V.: Every finitely generated R-module splits as

torsion ⊕ finitely generated projective.

I V.: The dimension faithfully measures the torsion-free
part.



Really von-Neumann-algebra-like!

Theorem [V.] dim has all the properties as the dimension of
a finite von Neumann algebra.

1. Extension: two steps agree.

2. Additivity for short exact sequences.

3. Cofinality: dimension of directed union is supremum of
dimensions.

4. Continuity: closure and dimension agree.

5. The dimension is uniquely determined by 1 – 4.

Outline of the proof: Work over regular Q. Can go back to
R since the projections are the same. Prove continuity using
the monotony of f.g.p. modules.



Act 3 – Another Berberian’s Question

Berberian: A8 and A9 give us Mn(R) is Baer but
they are rather strong.

Question: Can we get rid of them?



Happy End

Yes!!!

Theorem [V.]

I We can get rid of A9 (i.e. A1 – A7 imply A9).

I For Mn(R) Baer we do not need A8. So, A1 –
A7 are enough for Mn(R) Baer.

Proof follows from

1. Vaš: R is semihereditary and Qcl(R) = Q = Qmax(R)..

2. M. W. Evans: The following are equivalent

i) R is right semihereditary and Qmax(R) is the left and
right flat epimorphic hull of R.

ii) Mn(R) is a right strongly Baer ring for all n.



A sequel?

A8 is used:

- In [Be] to show that Mn(R) is finite.

- In [Va2] to show that the dimension function can be
extended from projections in R to projections in Mn(R).

Can we get rid of A8 also? Berberian believed so. Problem
is still open.
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