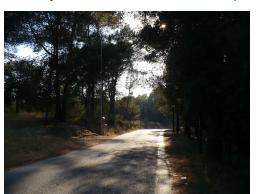
Algebras of quotients of some (Leavitt) path algebras

My path to Spain

Lia Vaš

University of the Sciences in Philadelphia



How it all started?

Barcelona/Bellaterra, July 2007.

E. Ortega

P. Ara & M. Brustenga (symmetric quotient rings) (regular alg. of path algebras)

G. Aranda Pino (Leavitt path algebras)

Building blocks of a Leavitt path algebra

A graph

 $E = (E^0, E^1, r, s)$ – an oriented graph. E^0 – vertices. E^1 edges. For $e \in E$ s(e)= source, r(E)= range. s(e) $\stackrel{e}{\longrightarrow}$ $\bullet^{r(e)}$

A path μ in a graph is a list of edges $\mu = e_1 \dots e_n$ with $r(e_i) = s(e_{i+i})$ for $i = 1, \dots n-1$. n =length of μ .

 $E^* = \mathbf{set}$ of all paths (with vertices as paths of length 0).

A path algebra

K= field. A **path algebra** $P_K(E)$ is a K-algebra such that

- ▶ the basis is a set of all paths *E**
- ▶ the multiplication of two paths p and q is concatenation if r(p) = s(q) and it is 0 otherwise.

A path to a Leavitt path algebra

Add ghost paths.

For every edge e, add a **ghost** edge e^* such that

source $e = \text{range } e^*$ and range $e = \text{source } e^*$

Consider paths over this new graph.

Leavitt path algebra – the definition

E= graph. K= field. A **Leavitt path algebra** $L_K(E)$ is a free K-algebra with basis consisting of **vertices**, **edges and ghost edges** of E such that

P1
$$vv = v$$
 and $vw = 0$ if $v \neq w$,
$$P2 e = s(e)e = er(e)$$

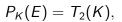
CK1 $e^*e = r(e)$, and $e^*f = 0$ if $e \neq f$

CK2 $v = \sum ee^*$ for all e's that originate from v.

In CK2, v is a vertex that emits at least one and not infinitely many edges.

P1, P2: path algebra axioms. CK1, CK2: **Cuntz** - **Krieger relations** (originate from graph C^* algebras).

3 famous examples: Matrices, Loop and Rose



$$L_K(E) = M_2(K)$$

Get $n \times n$ matrices

Loop

$$P_K(E) = K[x],$$

$$L_K(E) = K[x, x^{-1}]$$

Rose

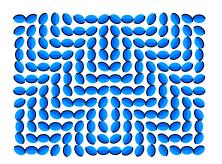
$$P_K(E) =$$

$$K[x_1,\ldots,x_n],$$

$$L_K(E) = L(1, n)$$

Work of Eduard Ortega 2006

- ▶ Computed **left, right and symmetric maximal ring of quotients** of $P_K(E)$ for E directly finite acyclic.
- ▶ Defined **symmetric modules of quotients**: parallels right Gabriel filters and right modules of quotients.



In 2007, I was more interested in symmetric results than in path algebras...

The "most perfect" ring of quotients

Ring homomorphism $R \to Q$ makes Q into a **perfect right** ring of quotients if $Q \otimes_R Q \cong Q$ and Q is flat as left R-module.

The total right ring of quotients $Q_{\text{tot}}^r(R)$ is the largest perfect ring of quotients in which R embeds. Introduced in '60s and '70s.

$$(Q_{\operatorname{cl}}^r\subseteq)Q_{\operatorname{tot}}^r\subseteq Q_{\operatorname{max}}^r$$

 $Q_{ ext{tot}}^r$ always exists (as opposed to $Q_{ ext{cl}}^r$). $Q_{ ext{max}}^r$ can be too big. $Q_{ ext{tot}}^r$ "just right".

"Just right" meets symmetric

[L. V.] Total symmetric ring of quotients $Q_{\mathrm{tot}}^{\sigma}(R)$

- 1. Symmetric version of perfect right rings of quotients.
- 2. Symmetric version of perfect right filters.
- 3. Symmetric version of the total right ring of quotients $Q_{\rm tot}^{\sigma}$.

And then some time passed by...

Tokyo, Japan; Ankara, Turkey; Colorado Spring, CO; Washington, DC; and Lens, France...

... got me closer to Leavitt path algebras.

Work of Pere Ara and Miquel Brustenga

Defined a **regular algebra** Q(E) of P(E) and L(E).

- Σ = set of matrices with entries in P(E) that become invertible in the algebra of power series P((E)).
- ▶ Σ_1 = set of homomorphisms μ . For every non-sink vertex ν , let $e_1, \ldots e_n$ be all the edges that ν emits.

$$\mu: P(E)v \rightarrow P(E)r(e_1) \oplus \ldots \oplus P(E)r(e_n)$$

 $x \mapsto (xe_1, \ldots, xe_n).$

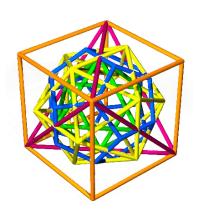
$$P(E) \xrightarrow{\Sigma^{-1}} P_{rat}(E) \longrightarrow P((E))$$

$$\downarrow^{\Sigma_{1}^{-1}} \qquad \downarrow^{\Sigma_{1}^{-1}} \qquad \downarrow^{\Sigma_{1}^{-1}}$$

$$L(E) \xrightarrow{\Sigma^{-1}} Q(E) \longrightarrow U(E)$$

Pere Ara and Miquel Brustenga's results

- 1. Q(E) is (von Neumann) regular.
- 2. *Q*(*E*) satisfies (P1), (P2), (CK1), and (CK2).
- 3. $Q(E) = Q'_{\text{tot}}(L(E)) = Q'_{\text{tot}}(P(\overline{E})).$
- 4. The monoids of fin. gen. projectives V(Q(E)) and V(L(E)) are isomorphic.



regular

The forgotten stars

 $L_K(E)$ has involution *.

An **involution** * is an additive map with $(xy)^* = y^*x^*$, and $(x^*)^* = x$.

For involution $k \mapsto \overline{k}$ in K (can always take it to be identity) define

$$(kpq^*)^* = \overline{k}qp^*$$

for monomials in $L_K(E)$. Extend it to all elements so it is additive.

Why study the involution?

For *-rings **projections** (selfadjoint idempotents $p = p^* = p^2$) take over the role of **idempotents**.

Advantages:

- ▶ Berberian: "Projections are vastly easier to work with than idempotents."
- ▶ Left-right does not matter that much (certain dose of symmetry is present).
- ► Good feature of LPAs: vertices are **projections**.

*-adapted concepts:

- ▶ Baer becomes Baer *-ring,
- ► Rickart becomes Rickart *-ring,
- regular becomes *-regular.

This opens up some questions

- 1. When is L(E) Baer (Rickart) *-ring?
- 2. **Does** * **extend** to Q(E)?
- 3. If it does, is Q(E) *-regular?
- 4. When is Q(E) unit-regular?

$$E$$
 acyclic or $E = \text{loop} \longrightarrow Q(E)$ is unit-regular,
 $E = \text{rose} \longrightarrow Q(E)$ is not unit-regular.

High hopes: if there is a case when Q(E) is *-regular but not unit-regular, this will answer

Handelman Conjecture: Is every *-regular ring unit-regular?

More questions

- 5. Is L(E) finite (i.e. $xx^* = 1$ implies $x^*x = 1$)?
- 6. When L(E) is finite, is it **directly finite** (i.e. xy = 1 implies yx = 1)?

7. If Q(E) is *-regular, then it is finite. Does this implies L(E) finite as well?

To find all the answers...

...I needed somebody who knows Leavitt path algebras well.

Finding answers using "no exit"

A graph *E* has **NE condition** if no cycle has an exit. Call them: no-exit graphs.

In a no-exit graph, every path leads towards either

- to a sink or
- to a cycle (without an exit).

Known results

[G. Abrams, G. A. P., M. Siles Molina] E finite. TFAE:

- 1. E is no-exit.
- 2. L(E) is left (right) noetherian.
- 3.

$$L(E) \cong \left(\bigoplus_{i=1}^{l} M_{m_i}(K[x,x^{-1}])\right) \oplus \left(\bigoplus_{j=1}^{l'} M_{n_j}(K)\right)$$

l= no. of cycles, $m_i=$ no. of paths ending in a vertex of a cycle c_i (not counting the cycle itself), l'= no. of sinks, $n_i=$ no. of paths ending in a fixed sink.

Answers

Theorem [G. A. P. & L. V.] *E* – finite graph. The following are equivalent.

- 1. E is no-exit.
- 2. Q(E) is unit-regular.
- 3. L(E) is finite.
- 4. L(E) is directly finite.
- 5. Q(E) is directly finite.
- 6. Q(E) is left and right self-injective.
- 7. Q(E) is semisimple.
- 8. L(E) has finite universal dimension.
- 9. The monoid of equivalence classes of finitely generated projectives $V(L(E)) \cong V(Q(E))$ is cancellative.

Answers - continued

Theorem [G. A. P. & L. V.] If *K* is positive definite, then the following are equivalent to 1–9 also.

- 10. The involution * extends from L(E) to Q(E).
- 11. Q(E) is *-regular (for involution inherited from L(E)).
- 12. Q(E) is finite (for involution inherited from L(E)).
- 13. $Q(E) = Q_{\max}^{\sigma}(L(E))$.
- 14. $Q(E) = Q_{\text{tot}}^{\sigma}(L(E)).$
- 15. $Q_{\max}^r(L(E)) = Q_{\text{tot}}^I(L(E)).$
- 16. $Q_{\max}^r(L(E)) = Q_{\text{tot}}^l(L(E)) = Q_{\text{tot}}^r(L(E)).$
- 17. Every fin. gen. nonsingular L(E)-module is projective.
- 18. $M_n(L(E))$ is strongly Baer (i.e. every complemented right ideal is generated by an idempotent) for every n.

Corollaries

- **[G. A. P. & L. V.]** K =field with positive definite involution, E =finite no-exit graph.
 - 1. L(E) is Baer ring.
 - 2. P fin. gen. nonsingular (= fin. gen. proj.) L(E)-module, then $E(P) = P \otimes_{L(E)} Q(E)$ and there is a one-to-one correspondence

3. The inverse of the isomorphism $\varphi: V(L(E)) \to V(Q(E))$, is induced by $P \mapsto P \cap L(E)^n$ if P is a finitely generated projective Q(E)-module that can be embedded in $Q(E)^n$.

Questions

- 1. Which of the conditions remain equivalent if *E* is a row-finite graph? Any graph?
- 2. It turns that Q(E) is unit-regular exactly when it is *-regular so no hope for Handelman's Conjecture using LPAs. Since it is a great question we ask again: is HC true?

Some references

- ► **ArXiv.** Papers by Ortega, Ara and Brustenga.
- ▶ Google "Gonzalo Aranda Pino"
- ▶ Google "Lia Vas". First google hit = http://www.usp.edu/~lvas

