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Building blocks of a Leavitt path algebra

A graph

E = (E 0,E 1, r , s) – an oriented graph. E 0 – vertices. E 1

edges. For e ∈ E s(e)= source, r(E )= range. s(e)• e // •r(e)

A path µ in a graph is a list of edges µ = e1 . . . en with r(ei)
= s(ei+i) for i = 1, . . . n − 1. n= length of µ.

E ∗ = set of all paths (with vertices as paths of length 0).

A path algebra

K= field. A path algebra PK (E ) is a K -algebra such that

I the basis is a set of all paths E ∗

I the multiplication of two paths p and q is concatenation
if r(p) = s(q) and it is 0 otherwise.



A path to a Leavitt path algebra

Add ghost paths.

For every edge e, add a ghost
edge e∗ such that

source e = range e∗ and
range e = source e∗

s(e)•
e

''
•r(e)

e∗
gg

Consider paths over this new
graph.



Leavitt path algebra – the definition

E= graph. K= field. A Leavitt path algebra LK (E ) is a free
K -algebra with basis consisting of vertices, edges and ghost
edges of E such that

P1 vv = v and vw = 0 if v 6= w ,

P2 e = s(e)e = er(e)

s(e)•
e

''
•r(e)

e∗
gg

CK1 e∗e = r(e), and e∗f = 0 if e 6= f

CK2 v =
∑

ee∗ for all e’s that originate from v .

In CK2, v is a vertex that emits at least one and not infinitely
many edges.

P1, P2: path algebra axioms. CK1, CK2: Cuntz - Krieger
relations (originate from graph C ∗ algebras).



3 famous examples: Matrices, Loop and Rose

• // • •
�� • eeqq

��
QQ

PK (E ) = T2(K ),

LK (E ) = M2(K )

Get n × n matrices
if E = n − 1 line.

Loop

PK (E ) = K [x ],

LK (E ) = K [x , x−1]

Rose

PK (E ) =
K [x1, . . . , xn],

LK (E ) = L(1, n)



Work of Eduard Ortega 2006

I Computed left, right and symmetric maximal ring of
quotients of PK (E ) for E directly finite acyclic.

I Defined symmetric modules of quotients: parallels
right Gabriel filters and right modules of quotients.

In 2007, I was more interested in symmetric results than in
path algebras...



The “most perfect” ring of quotients

Ring homomorphism R → Q makes Q into a perfect right
ring of quotients if Q ⊗R Q ∼= Q and Q is flat as left
R-module.
The total right ring of quotients Q r

tot(R) is the largest
perfect ring of quotients in which R embeds. Introduced in
’60s and ’70s.

(Q r
cl ⊆)Q r

tot ⊆ Q r
max

Q r
tot always exists (as
opposed to Q r

cl).
Q r

max can be too big.
Q r

tot ”just right”.



“Just right” meets symmetric

[L. V.] Total symmetric ring of quotients Qσ
tot(R)

1. Symmetric version of perfect right rings of quotients.

2. Symmetric version of perfect right filters.

3. Symmetric version of the total right ring of quotients Qσ
tot.



And then some time passed by...

Tokyo, Japan; Ankara, Turkey; Colorado Spring, CO;
Washington, DC; and Lens, France...

... got me closer to Leavitt path algebras.



Work of Pere Ara and Miquel Brustenga

Defined a regular algebra Q(E ) of P(E ) and L(E ).

I Σ = set of matrices with entries in P(E ) that become
invertible in the algebra of power series P((E )).

I Σ1 = set of homomorphisms µ. For every non-sink vertex
v , let e1, . . . en be all the edges that v emits.
µ : P(E )v → P(E )r(e1)⊕ . . .⊕ P(E )r(en)

x 7→ (xe1, . . . , xen).

P(E ) Σ−1
//

Σ−1
1

��

Prat(E ) //

Σ−1
1

��

P((E ))

Σ−1
1

��
L(E ) Σ−1

// Q(E ) // U(E )



Pere Ara and Miquel Brustenga’s results

1. Q(E ) is (von Neumann) regular.

2. Q(E ) satisfies (P1), (P2), (CK1),
and (CK2).

3. Q(E ) = Q l
tot(L(E )) = Q l

tot(P(E )).

4. The monoids of fin. gen.
projectives V (Q(E )) and V (L(E ))
are isomorphic.

regular



The forgotten stars

LK (E ) has involution *.

An involution ∗ is an additive map with (xy)∗ = y ∗x∗, and
(x∗)∗ = x .

For involution k 7→ k in K (can
always take it to be identity)
define

(kpq∗)∗ = kqp∗

for monomials in LK (E ).

Extend it to all elements so it is
additive.



Why study the involution?

For ∗-rings projections (selfadjoint idempotents p = p∗ = p2)
take over the role of idempotents.

Advantages:

I Berberian: “Projections are vastly easier to work with
than idempotents.”

I Left-right does not matter that much (certain dose of
symmetry is present).

I Good feature of LPAs: vertices are projections.

*-adapted concepts:

I Baer becomes Baer *-ring,

I Rickart becomes Rickart *-ring,

I regular becomes *-regular.



This opens up some questions

1. When is L(E ) Baer (Rickart) *-ring?

2. Does ∗ extend to Q(E )?

3. If it does, is Q(E ) *-regular?

4. When is Q(E ) unit-regular?

E acyclic or E = loop −→ Q(E ) is unit-regular,
E = rose −→ Q(E ) is not unit-regular.

High hopes: if there is a case when Q(E ) is *-regular but not
unit-regular, this will answer

Handelman Conjecture: Is every *-regular ring
unit-regular?



More questions

5. Is L(E ) finite (i.e. xx∗ = 1 implies x∗x = 1)?

6. When L(E ) is finite, is it directly finite (i.e. xy = 1
implies yx = 1)?

7. If Q(E ) is *-regular, then it is finite. Does this implies
L(E ) finite as well?



To find all the answers...

...I needed somebody who knows Leavitt path algebras well.



Finding answers using “no exit”

A graph E has NE condition if no cycle has an exit. Call
them: no-exit graphs.

In a no-exit graph, every
path leads towards either

I to a sink or

I to a cycle (without an
exit).



Known results

[G. Abrams, G. A. P., M. Siles Molina] E finite. TFAE:

1. E is no-exit.

2. L(E ) is left (right) noetherian.

3.

L(E ) ∼=

(
l⊕

i=1

Mmi
(K [x , x−1])

)
⊕

(
l ′⊕

j=1

Mnj
(K )

)
l = no. of cycles, mi = no. of paths ending in a vertex of
a cycle ci (not counting the cycle itself), l ′ = no. of
sinks, nj = no. of paths ending in a fixed sink.

←→



Answers

Theorem [G. A. P. & L. V.] E – finite graph. The following
are equivalent.

1. E is no-exit.

2. Q(E ) is unit-regular.

3. L(E ) is finite.

4. L(E ) is directly finite.

5. Q(E ) is directly finite.

6. Q(E ) is left and right self-injective.

7. Q(E ) is semisimple.

8. L(E ) has finite universal dimension.

9. The monoid of equivalence classes of finitely generated
projectives V (L(E )) ∼= V (Q(E )) is cancellative.



Answers - continued

Theorem [G. A. P. & L. V.] If K is positive definite, then
the following are equivalent to 1–9 also.

10. The involution ∗ extends from L(E ) to Q(E ).

11. Q(E ) is ∗-regular (for involution inherited from L(E )).

12. Q(E ) is finite (for involution inherited from L(E )).

13. Q(E ) = Qσ
max(L(E )).

14. Q(E ) = Qσ
tot(L(E )).

15. Q r
max(L(E )) = Q l

tot(L(E )).

16. Q r
max(L(E )) = Q l

tot(L(E )) = Q r
tot(L(E )).

17. Every fin. gen. nonsingular L(E )-module is projective.

18. Mn(L(E )) is strongly Baer (i.e. every complemented right
ideal is generated by an idempotent) for every n.



Corollaries

[G. A. P. & L. V.] K = field with positive definite
involution, E = finite no-exit graph.

1. L(E ) is Baer ring.

2. P fin. gen. nonsingular (= fin. gen. proj.) L(E )-module,
then E (P) = P ⊗L(E) Q(E ) and there is a one-to-one
correspondence

{dir. sum. of P} ⇐⇒ {dir. sum. of E (P)}
given by K → K ⊗L(E) Q(E ) = E (K )

and the inverse by K ∩ P ← K

3. The inverse of the isomorphism ϕ : V (L(E ))→ V (Q(E )),
is induced by P 7→ P ∩ L(E )n if P is a finitely generated
projective Q(E )-module that can be embedded in Q(E )n.



Questions

1. Which of the conditions remain equivalent if E is a
row-finite graph? Any graph?

2. It turns that Q(E ) is unit-regular exactly when it is
∗-regular - so no hope for Handelman’s Conjecture using
LPAs. Since it is a great question we ask again: is HC
true?



Some references

I ArXiv. Papers by Ortega, Ara and Brustenga.

I Google “Gonzalo Aranda Pino”

I Google “Lia Vas”. First google hit =
http://www.usp.edu/∼lvas


