General Calculus

Syllabus

handouts syllabus pdf flier

Fall 2022

The classes will be held on the University City campus.
Class times and place: Tue and Th 11:00–12:15 in STC 237.

Office Hours

are by appointment: email me and we will find a time for us to meet. I will be glad to answer all of your questions about the course material, go over some problems together with you, check your assignment work, review together for an exam, or simply discuss course content you may have questions about.

Learning Platforms

Brightspace D2L: You should be able to access the course page on Brightspace D2L. Under “Content” I will also be posting the solutions of hand-in assignments and exams.
Mobius: An online learning platform called Mobius is used instead of a texbook for this course. On Mobius, the course material is presented in a gradual way and there are step-by-step examples and practice problems. You can access Mobius at https://usciences.mobius.cloud/login and https://digitaled.com/support/help/student/Content/STUD-ENROLL-REGISTER/License-within-Mobius.htm#Access contains more information on how to set up an account o Mobius and access the course material.
This website: In addition to D2L and Mobius, there are handouts on this website.

Technology

All students are required to have a graphing calculator. Instructions will be given for TI83/84

Topics Covered

1. Limits
2. Infinite Limits, Limits at Infinity, Horizontal and Vertical Asymptotes
3. Continuity. Applications of Limits
4. The Derivative, the Rate of Change
5. Finding and Using Derivative
6. Higher Derivatives. Differentiability
(Exam 1)

7. The Product, Quotient, and Chain Rules
8. Derivatives of Exponential, Logarithmic and Trigonometric Functions
9. Linear Approximation
10. Implicit Differentiation
11. Related Rates
(Exam 2)

12. Increasing/Decreasing Test. Extreme Values and the First Derivative Test
13. Concavity and Inflection Points. The Second Derivative Test
14. Absolute Extrema and Constrained Optimization
(Exam 3)

15. Antiderivatives and the Indefinite Integral
16. Substitution
17. Integrals of Exponential and Trigonometric Functions. Integrals Producing Logarithmic Functions
18. Definite Integral. Left and Right Sums
19. Fundamental Theorem of Calculus
20. Areas between Curves

Tentative exam dates

Exam 1: during the 4th week of classes.
Exam 2: during the 7th week of classes.
Exam 3: during the 11th week of classes.
Final Exam: during the finals week.

Grading

Exams 1, 2 and 317% each
Final Exam24%
Hand-in Assignments15%
Mobius Assignments10%
TOTAL100%
Grades are computed according to the following system:
A A- B+ B B- C+ C C- D+ D F
grade 93-100 90-92 87-89 83-86 80-82 77-79 73-76 70-72 67-69 60-66 0-59

Number of credits

3

Prerequisites

Precalculus or permission of instructor

This is a rigorous course. You should plan to spend a minimum of twice the number of class hours on reading, homework assignments, and practice problems. The assigned homework is the minimum amount of practice you should complete. It is your responsibility to come to class prepared to ask questions on any covered concept.

Attendance

It is imperative that students attend all classes. Students are responsible for all material covered in class, even if attendance is not checked or assignments collected.

Exams

There will be three in-class exams plus a two hour comprehensive final exam. No makeup exam will be given unless the excuse for missing the scheduled exam is acceptable to the instructor. Any makeup exam must be taken before the next regularly scheduled exam. No exam grade will be dropped.

Hand-in Assignments

There will be four homework assignments. The purpose of these assignments is to prepare you for the coming exams. There will be no makeup assignments. Assignments turned in after their due date will receive an automatic reduction in grade. No assignment grade will be dropped.

Mobius Assignments

There will be 10 to 13 Mobius assignments during the semester. The purpose of these assignments is to ensure you are on track with the material and to prepare you for the hand-in assignments. There will be no makeup assignments. Assignments turned in after their due date will receive an automatic reduction in grade. Two Mobius assignment grades will be dropped.

Response time

The assignments, projects and exams are typically graded in three days after they are turned in. Special circumstances like snow days, school closing or holidays, may occasionally delay the response time. Barring special circumstances, students’ emails are usually responded to within one working day.

Course Objectives

  • to obtain a well rounded introduction to the area of limits, differentiation and basic integration techniques;
  • to develop basic knowledge of calculus problem formulation, problem solving and modeling techniques required for successful application of mathematics;
  • to competently use appropriate technology to model data, implement mathematical algorithms and solve mathematical problems;
  • to cultivate the analytical skills required for the efficient use and understanding of mathematics.

Learning outcomes

Students will:
  • know the basic concepts of differential and integral calculus;
  • demonstrate proficiency in differentiation and integration techniques;
  • be able to interpret and critique graphs using calculus techniques;
  • be able to understand and solve multidisciplinary application problems using calculus;
  • demonstrate proficiency in using mathematical software;
  • know how to use appropriate technology to solve problems applying calculus techniques.

Academic integrity

Saint Joseph’s University encourages the free and open pursuit of knowledge; we consider this to be a fundamental principle and strength of a democratic people. To this end, SJU expects its students, its faculty, its administrators, and its staff to uphold the highest standards of academic integrity. The University expects all members of the University community to both honor and protect one another’s individual and collective rights.

Student with Disabilities Statement

Reasonable academic accommodations may be provided to students who submit appropriate documentation of their disability. If students have need of assistance or questions with this issue, they are encouraged to contact the Office of Student Disability Services (SDS) at sds@sju.edu or by phone at 610.660.1774. The Office of SDS also provides an appeal/grievance procedure for complaints regarding requested or offered reasonable accommodations. More information can be found at: www.sju.edu/sds.

Health and Wellness Statement

Saint Joseph's University recognizes that physical and mental health strongly impact one's ability to do well in school and in life. As a result, there are many helpful campus resources designed to help students to care for their physical, mental, and spiritual health. Students may experience stressors that can impact both their academic experience and their personal well-being. These may include academic pressure and challenges associated with relationships, mental health, alcohol or other drugs, identities, finances, etc. All of us benefit from support during times of struggle and challenges. If you are experiencing concerns, seeking assistance sooner rather than later is a courageous thing to do for yourself and those who care about you. The resources at https://sites.sju.edu/counseling/ can help you to cope with stress and to achieve your academic and personal goals.

COVID-19 policy

SJU's Covid-19 policy is available at: https://www.sju.edu/hawk-hill-ahead/health-and-safety/monitoring . In particular, it states that all faculty, staff, students and visitors are asked to carry a mask at all times while on campus and that they should wear it if asked to. Since my office is relatively small, please note that I ask you to wear a mask when you are in my office.